Topic Embeddings – A New Approach to Classify Very Short Documents Based on Predefined Topics
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Traditional unsupervised topic modeling approaches like Latent Dirichlet Allocation (LDA) lack the ability to classify documents into a predefined set of topics. On the other hand, supervised methods require significant amounts of labeled data to perform well on such tasks. We develop a new unsupervised method based on word embeddings to classify documents into predefined topics. We evaluate the predictive performance of this novel approach and compare it to seeded LDA. We use a real-world dataset from online advertising, which is comprised of markedly short documents. Our results indicate the two methods may complement one another well, leading to remarkable sensitivity and precision scores of ensemble learners trained thereupon.
Originalsprache | Englisch |
---|---|
Titel | Human Practice. Digital Ecologies. Our Future : 14. Internationale Tagung Wirtschaftsinformatik (WI 2019), Tagungsband |
Herausgeber | Thomas Ludwig, Volkmar Pipek |
Anzahl der Seiten | 15 |
Erscheinungsort | Siegen |
Verlag | Universitätsverlag Siegen |
Erscheinungsdatum | 2019 |
Seiten | 453-467 |
ISBN (elektronisch) | 978-3-96182-063-4 |
DOIs | |
Publikationsstatus | Erschienen - 2019 |
Veranstaltung | 14. Internationale Tagung Wirtschaftsinformatik - WI 2019: Human Practice. Digital Ecologies. Our Future. - Universität Siegen, Institut für Wirtschaftsinformatik, Siegen, Deutschland Dauer: 24.02.2019 → 27.02.2019 Konferenznummer: 14 https://wi2019.de/ https://wi2019.de/call-for-papers/ https://wi2019.de/ |
- Wirtschaftsinformatik - topic modeling, word embeddings, LDA, seeded LDA