Surveying the FAIRness of Annotation Tools: Difficult to find, difficult to reuse

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

  • Ekaterina Borisova
  • Raia Abu Ahmad
  • Leyla Jael Garcia-Castro
  • Ricardo Usbeck
  • Georg Rehm
In the realm of Machine Learning and Deep Learning, there is a need for high-quality annotated data to train and evaluate supervised models. An extensive number of annotation tools have been developed to facilitate the data labelling process. However, finding the right tool is a demanding task involving thorough searching and testing. Hence, to effectively navigate the multitude of tools, it becomes essential to ensure their findability, accessibility, interoperability, and reusability (FAIR). This survey addresses the FAIRness of existing annotation software by evaluating 50 different tools against the FAIR principles for research software (FAIR4RS). The study indicates that while being accessible and interoperable, annotation tools are difficult to find and reuse. In addition, there is a need to establish community standards for annotation software development, documentation, and distribution.
OriginalspracheEnglisch
TitelLAW 2024 - 18th Linguistic Annotation Workshop, Co-located with EACL 2024 - Proceedings of the Workshop : Proceedings of the Workshop
HerausgeberSophie Henning, Manfred Stede
Anzahl der Seiten17
ErscheinungsortStroudsburg
VerlagAssociation for Computational Linguistics (ACL)
Erscheinungsdatum01.03.2024
Seiten29-45
ISBN (elektronisch)979-8-89176-073-8
PublikationsstatusErschienen - 01.03.2024
VeranstaltungThe 18th Linguistic Annotation Workshop - St. Julians, Malta
Dauer: 21.03.202422.03.2024
Konferenznummer: 18
https://www.aclweb.org/portal/content/first-call-papers-18th-linguistic-annotation-workshop

Bibliographische Notiz

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Links