Scholarly Question Answering Using Large Language Models in the NFDI4DataScience Gateway
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
This paper introduces a scholarly Question Answering (QA) system on top of the NFDI4DataScience Gateway, employing a Retrieval Augmented Generation-based (RAG) approach. The NFDI4DS Gateway, as a foundational framework, offers a unified and intuitive interface for querying various scientific databases using federated search. The RAG-based scholarly QA, powered by a Large Language Model (LLM), facilitates dynamic interaction with search results, enhancing filtering capabilities and fostering a conversational engagement with the Gateway search. The effectiveness of both the Gateway and the scholarly QA system is demonstrated through experimental analysis.
Originalsprache | Englisch |
---|---|
Titel | Natural Scientific Language Processing and Research Knowledge Graphs - 1st International Workshop, NSLP 2024, Proceedings |
Herausgeber | Georg Rehm, Stefan Dietze, Sonja Schimmler, Frank Krüger |
Anzahl der Seiten | 16 |
Verlag | Springer Science and Business Media Deutschland GmbH |
Erscheinungsdatum | 2024 |
Seiten | 3-18 |
ISBN (Print) | 978-3-031-65793-1 |
ISBN (elektronisch) | 978-3-031-65794-8 |
DOIs | |
Publikationsstatus | Erschienen - 2024 |
Veranstaltung | 1st International Workshop on Natural Scientific Language Processing and Research Knowledge Graphs - NSLP 2024 - Hersonissos, Hersonissos, Griechenland Dauer: 27.05.2024 → 27.05.2024 Konferenznummer: 1 https://nfdi4ds.github.io/nslp2024/ |
Bibliographische Notiz
Publisher Copyright:
© The Author(s) 2024.
- Informatik
- Wirtschaftsinformatik