Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands. / Eibes, Pia Maria; Oldeland, Jens; Irl, Severin David Howard et al.
in: Journal of Vegetation Science, Jahrgang 32, Nr. 3, e13036, 01.05.2021.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Eibes PM, Oldeland J, Irl SDH, Twerski A, Kühne N, Schmiedel U. Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands. Journal of Vegetation Science. 2021 Mai 1;32(3):e13036. doi: 10.1111/jvs.13036

Bibtex

@article{9a8c20c401bf4dfc8f100df329bfd009,
title = "Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands",
abstract = "Questions: Habitat islands are often characterized by the presence of more or less sharp boundaries to adjacent matrix habitats. However, knowledge on boundaries of natural habitat islands is scarce, especially regarding patterns of beta diversity and its two underlying components: species turnover and nestedness. We therefore aim to quantify the effects of fine-scaled and sharp boundaries of quartz islands (quartz gravel-covered soils) on the different components of plant beta diversity and how they are linked to different soil environmental drivers. Location: Knersvlakte, Western Cape, South Africa. Methods: We sampled plant species richness in 56 fine-scale transects of 6 m × 1 m plots across eight different boundary types (four quartz island to matrix, four between habitats on quartz islands). Soil depth and chemistry (pH, electrical conductivity) were analyzed for each 1 m2 plot. Differences in the two beta diversity components (turnover and nestedness) for each boundary type were tested by t tests. We used linear models to test relationships between species and environmental dissimilarity. Results: All boundary types showed high beta diversity. Species turnover was the prevailing component for six boundary types, the nestedness component was only important for two boundary types. We found a significant linear increase of species dissimilarity with increasing dissimilarity in soil pH and distinct plant communities for the habitat types, but no significant increase for electrical conductivity or soil depth. Conclusions: The spatial distinctiveness of the quartz islands leads to sharp boundaries, which result in high beta diversity, mainly through species turnover. This reflects the high levels of diversification and adaptation of the local plant communities. Nestedness occurred at two boundaries to the matrix, indicating that the latter does not necessarily represent an impermeable boundary for all species of the respective ecosystem. Studying diversity patterns across boundaries contributes to the question of applicability of island biogeography theory to habitat islands.",
keywords = "beta diversity, boundary dynamics, community ecology, diversity indices, ecotone, edge effects, habitat island, nestedness, quartz fields, soil diversity, species turnover, Succulent Karoo, transition zone, Ecosystems Research",
author = "Eibes, {Pia Maria} and Jens Oldeland and Irl, {Severin David Howard} and Alina Twerski and Nicole K{\"u}hne and Ute Schmiedel",
note = "This research was funded by the German Research Foundation (DFG project number 404519812) and by the German Federal Ministry of Education and Research (BMBF project number 01LG1201N–SASSCAL). The field work of AT and NK was financially supported by the Deutsche Kakteen Gesellschaft (DKG)",
year = "2021",
month = may,
day = "1",
doi = "10.1111/jvs.13036",
language = "English",
volume = "32",
journal = "Journal of Vegetation Science",
issn = "1100-9233",
publisher = "Wiley-Blackwell Publishing, Inc.",
number = "3",

}

RIS

TY - JOUR

T1 - Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands

AU - Eibes, Pia Maria

AU - Oldeland, Jens

AU - Irl, Severin David Howard

AU - Twerski, Alina

AU - Kühne, Nicole

AU - Schmiedel, Ute

N1 - This research was funded by the German Research Foundation (DFG project number 404519812) and by the German Federal Ministry of Education and Research (BMBF project number 01LG1201N–SASSCAL). The field work of AT and NK was financially supported by the Deutsche Kakteen Gesellschaft (DKG)

PY - 2021/5/1

Y1 - 2021/5/1

N2 - Questions: Habitat islands are often characterized by the presence of more or less sharp boundaries to adjacent matrix habitats. However, knowledge on boundaries of natural habitat islands is scarce, especially regarding patterns of beta diversity and its two underlying components: species turnover and nestedness. We therefore aim to quantify the effects of fine-scaled and sharp boundaries of quartz islands (quartz gravel-covered soils) on the different components of plant beta diversity and how they are linked to different soil environmental drivers. Location: Knersvlakte, Western Cape, South Africa. Methods: We sampled plant species richness in 56 fine-scale transects of 6 m × 1 m plots across eight different boundary types (four quartz island to matrix, four between habitats on quartz islands). Soil depth and chemistry (pH, electrical conductivity) were analyzed for each 1 m2 plot. Differences in the two beta diversity components (turnover and nestedness) for each boundary type were tested by t tests. We used linear models to test relationships between species and environmental dissimilarity. Results: All boundary types showed high beta diversity. Species turnover was the prevailing component for six boundary types, the nestedness component was only important for two boundary types. We found a significant linear increase of species dissimilarity with increasing dissimilarity in soil pH and distinct plant communities for the habitat types, but no significant increase for electrical conductivity or soil depth. Conclusions: The spatial distinctiveness of the quartz islands leads to sharp boundaries, which result in high beta diversity, mainly through species turnover. This reflects the high levels of diversification and adaptation of the local plant communities. Nestedness occurred at two boundaries to the matrix, indicating that the latter does not necessarily represent an impermeable boundary for all species of the respective ecosystem. Studying diversity patterns across boundaries contributes to the question of applicability of island biogeography theory to habitat islands.

AB - Questions: Habitat islands are often characterized by the presence of more or less sharp boundaries to adjacent matrix habitats. However, knowledge on boundaries of natural habitat islands is scarce, especially regarding patterns of beta diversity and its two underlying components: species turnover and nestedness. We therefore aim to quantify the effects of fine-scaled and sharp boundaries of quartz islands (quartz gravel-covered soils) on the different components of plant beta diversity and how they are linked to different soil environmental drivers. Location: Knersvlakte, Western Cape, South Africa. Methods: We sampled plant species richness in 56 fine-scale transects of 6 m × 1 m plots across eight different boundary types (four quartz island to matrix, four between habitats on quartz islands). Soil depth and chemistry (pH, electrical conductivity) were analyzed for each 1 m2 plot. Differences in the two beta diversity components (turnover and nestedness) for each boundary type were tested by t tests. We used linear models to test relationships between species and environmental dissimilarity. Results: All boundary types showed high beta diversity. Species turnover was the prevailing component for six boundary types, the nestedness component was only important for two boundary types. We found a significant linear increase of species dissimilarity with increasing dissimilarity in soil pH and distinct plant communities for the habitat types, but no significant increase for electrical conductivity or soil depth. Conclusions: The spatial distinctiveness of the quartz islands leads to sharp boundaries, which result in high beta diversity, mainly through species turnover. This reflects the high levels of diversification and adaptation of the local plant communities. Nestedness occurred at two boundaries to the matrix, indicating that the latter does not necessarily represent an impermeable boundary for all species of the respective ecosystem. Studying diversity patterns across boundaries contributes to the question of applicability of island biogeography theory to habitat islands.

KW - beta diversity

KW - boundary dynamics

KW - community ecology

KW - diversity indices

KW - ecotone

KW - edge effects

KW - habitat island

KW - nestedness

KW - quartz fields

KW - soil diversity

KW - species turnover

KW - Succulent Karoo

KW - transition zone

KW - Ecosystems Research

UR - http://www.scopus.com/inward/record.url?scp=85109200462&partnerID=8YFLogxK

U2 - 10.1111/jvs.13036

DO - 10.1111/jvs.13036

M3 - Journal articles

AN - SCOPUS:85109200462

VL - 32

JO - Journal of Vegetation Science

JF - Journal of Vegetation Science

SN - 1100-9233

IS - 3

M1 - e13036

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Soft Skills for Hard Constraints
  2. Semi-micro reflux procedure for minimization of chloride interference by COD determination.
  3. Application of feedforward artificial neural network in Muskingum flood routing
  4. GERBIL - General entity annotator benchmarking framework
  5. Temporal processes in prime–mask interaction
  6. Graph-Based Early-Fusion for Flood Detection
  7. Diffusion patterns in small vs. large capital markets-the case of value-based management
  8. Structural Synthesis of Parallel Robots with Unguided Linear Actuators
  9. Influence of Process Parameters and Die Design on the Microstructure and Texture Development of Direct Extruded Magnesium Flat Products
  10. Determination of 10 particle-associated multiclass polar and semi-polar pesticides from small streams using accelerated solvent extraction
  11. Value Orientations in the World of Visual Art: An Exploration Based on Latent Class and Correspondence Analysis
  12. Relationships between language-related variations in text tasks, reading comprehension, and students’ motivation and emotions: A systematic review
  13. Rapid grain refinement and compositional homogenization in a cast binary Cu50Ni alloy achieved by friction stir processing
  14. Dynamically adjusting the k-values of the ATCS rule in a flexible flow shop scenario with reinforcement learning
  15. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests
  16. Technical concept and evaluation design of the state subsidized project [Level-Q]
  17. Exploring the Uncanny-Valley-Effect in Affective Human-Robot Interaction
  18. Systematic feature evaluation for gene name recognition
  19. Modelling, Simulation and Experimental Analysis of a Metal-Polymer Hybrid Fibre based Microstrip Resonator for High Frequency Characterisation
  20. Recent Advances in Intelligent Algorithms for Fault Detection and Diagnosis
  21. Quality Assurance Methods and the Open Source Model
  22. Control of a Three-Axis Robot with Super Twisting Sliding Mode Control
  23. Learning from Erroneous Examples
  24. Training effects of two different unstable shoe constructions on postural control in static and dynamic testing situations
  25. From entity to process
  26. Effects of maize roots on aggregate stability and enzyme activities in soil
  27. PI and Fuzzy Controllers for Non-Linear Systems