Mining Implications From Data

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Item Tree Analysis (ITA) can be used to mine deterministic relationships from noisy data. In the educational domain, it has been used to infer descriptions of student knowledge from test responses in order to discover the implications between test items, allowing researchers to gain insight into the structure of the respective knowledge space. Existing approaches to ITA are computationally intense and yield results of limited accuracy, constraining the use of ITA to small datasets. We present work in progress towards an improved method that allows for efficient approximate ITA, enabling the use of ITA on larger data sets. Experimental results show that our method performs comparably to or better than existing approaches.

OriginalspracheEnglisch
TitelProceedings of the LWA 20 14 Workshops: KDML, IR and FGWM : Aachen, Germany, September 8 - 10, 2014
HerausgeberThomas Seidl, Marwan Hassani, Christian Beecks
Anzahl der Seiten12
VerlagRheinisch-Westfälische Technische Hochschule Aachen
Erscheinungsdatum2014
Seiten205-216
PublikationsstatusErschienen - 2014
Extern publiziertJa
Veranstaltung16th LWA 2014 Workshops KDML, IR and FGWM - RWTH Aachen , Aachen, Deutschland
Dauer: 08.09.201410.09.2014
Konferenznummer: 16

Links