Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Standard

Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning. / Bock, Frederic Eberhard; Blaga, Lucian Attila; Klusemann, Benjamin.
in: Procedia Manufacturing, Jahrgang 47, 05.2020, S. 615-622.

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{40d22613864442f9a722d28f57a57f23,
title = "Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning",
abstract = "Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.",
keywords = "Engineering, Decision trees, Process parameters, Random forests, Solid state joining, Support vector machines, Ultimate tesnile force",
author = "Bock, {Frederic Eberhard} and Blaga, {Lucian Attila} and Benjamin Klusemann",
note = "The authors acknowledge funding from the Helmholtz-Association via an ERC-Recognition-Award (ERC-RA-0022).; 23rd International Conference on Material Forming - 2020, ESAFORM 2020 ; Conference date: 04-05-2020 Through 08-05-2020",
year = "2020",
month = may,
doi = "10.1016/j.promfg.2020.04.189",
language = "English",
volume = "47",
pages = "615--622",
journal = "Procedia Manufacturing",
issn = "2351-9789",
publisher = "Elsevier B.V.",
url = "https://esaform2020.org/",

}

RIS

TY - JOUR

T1 - Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning

AU - Bock, Frederic Eberhard

AU - Blaga, Lucian Attila

AU - Klusemann, Benjamin

N1 - Conference code: 23

PY - 2020/5

Y1 - 2020/5

N2 - Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.

AB - Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.

KW - Engineering

KW - Decision trees

KW - Process parameters

KW - Random forests

KW - Solid state joining

KW - Support vector machines

KW - Ultimate tesnile force

UR - http://www.scopus.com/inward/record.url?scp=85085520581&partnerID=8YFLogxK

U2 - 10.1016/j.promfg.2020.04.189

DO - 10.1016/j.promfg.2020.04.189

M3 - Conference article in journal

AN - SCOPUS:85085520581

VL - 47

SP - 615

EP - 622

JO - Procedia Manufacturing

JF - Procedia Manufacturing

SN - 2351-9789

T2 - 23rd International Conference on Material Forming - 2020

Y2 - 4 May 2020 through 8 May 2020

ER -

Dokumente

DOI

Zuletzt angesehen

Forschende

  1. Georg Reischauer

Publikationen

  1. Experiments are needed to quantify the main causes of insect decline
  2. Understanding the error-structure of Time-driven Activity-based Costing
  3. A comparison of the strength of biodiversity effects across multiple functions
  4. Putting adaptive planning into practice: A meta-analysis of current applications
  5. Kontext
  6. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach
  7. On the Relation of Boredom and Sadistic Aggression
  8. Second International Workshop on Linked Data-driven Resilience Research 2023
  9. Do children with deficits in basic cognitive functions profit from mixed age primary schools?
  10. Working hour arrangements and working hours
  11. The role of gestures in a teacher-student-discourse about atoms
  12. Logik
  13. Where Tasks, Technology, and Textbooks Meet: An Exploratory Analysis of English Language Teachers’ Perceived Affordances of an Intelligent Language Tutoring System
  14. Requests for reasoning in geometrical textbook tasks for primary-level students
  15. Addressing the financing needs of the European Union through three C’s
  16. Towards a Critique of Social Networking
  17. Revisions and further developments of the Occupational Stress Indicator
  18. Introduction: A strategy for overcoming the definitional struggle
  19. Essential ecosystem service variables for monitoring progress towards sustainability
  20. On the impact of network size and average degree on the robustness of centrality measures
  21. Microsatellites and allozymes as the genetic memory of habitat fragmentation and defragmentation in populations of the ground beetle Carabus auronitens (Col., Carabidae)
  22. An indirectly controlled high-speed servo valve for IC engines using piezo actuators
  23. Relative wage positions and quit behavior
  24. Dynamics of Supply Chains Under Mixed Production Strategies
  25. "Lob des Unscheinbaren"
  26. Sensitive, simultaneous determination of P, S, Cl, Br and I containing pesticides in environmental samples by GC hyphenated with collision-cell ICP-MS
  27. Personal need for structure as a boundary condition for humor in leadership
  28. Key landscape features in the provision of ecosystem services
  29. Widening the evaluative space for ecosystem services
  30. Interkulturelle Differenzen im Selbstkonzept von Managern
  31. Crowdsourcing Hypothesis Tests