Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Standard

Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning. / Bock, Frederic Eberhard; Blaga, Lucian Attila; Klusemann, Benjamin.
in: Procedia Manufacturing, Jahrgang 47, 05.2020, S. 615-622.

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{40d22613864442f9a722d28f57a57f23,
title = "Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning",
abstract = "Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.",
keywords = "Engineering, Decision trees, Process parameters, Random forests, Solid state joining, Support vector machines, Ultimate tesnile force",
author = "Bock, {Frederic Eberhard} and Blaga, {Lucian Attila} and Benjamin Klusemann",
note = "The authors acknowledge funding from the Helmholtz-Association via an ERC-Recognition-Award (ERC-RA-0022).; 23rd International Conference on Material Forming - 2020, ESAFORM 2020 ; Conference date: 04-05-2020 Through 08-05-2020",
year = "2020",
month = may,
doi = "10.1016/j.promfg.2020.04.189",
language = "English",
volume = "47",
pages = "615--622",
journal = "Procedia Manufacturing",
issn = "2351-9789",
publisher = "Elsevier B.V.",
url = "https://esaform2020.org/",

}

RIS

TY - JOUR

T1 - Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning

AU - Bock, Frederic Eberhard

AU - Blaga, Lucian Attila

AU - Klusemann, Benjamin

N1 - Conference code: 23

PY - 2020/5

Y1 - 2020/5

N2 - Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.

AB - Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.

KW - Engineering

KW - Decision trees

KW - Process parameters

KW - Random forests

KW - Solid state joining

KW - Support vector machines

KW - Ultimate tesnile force

UR - http://www.scopus.com/inward/record.url?scp=85085520581&partnerID=8YFLogxK

U2 - 10.1016/j.promfg.2020.04.189

DO - 10.1016/j.promfg.2020.04.189

M3 - Conference article in journal

AN - SCOPUS:85085520581

VL - 47

SP - 615

EP - 622

JO - Procedia Manufacturing

JF - Procedia Manufacturing

SN - 2351-9789

T2 - 23rd International Conference on Material Forming - 2020

Y2 - 4 May 2020 through 8 May 2020

ER -

Dokumente

DOI

Zuletzt angesehen

Aktivitäten

  1. Eröffnungsvortrag auf der Tagung ‚Kinderliteratur im Fremdsprachenunterricht', Eötvös Loránd Universität Budapest 2004
  2. 30. Symposium klinische Psychologie und Psychotherapie der DGPs Fachgruppe klinische Psychologie und Psychotherapie 2012
  3. Die Entwicklung politisch-administrativer Mehrebenensysteme in Mittel- und Osteuropa: Regionalisierung durch Europäisierung
  4. 5. Tagung des EU-Forschungsverbundes CAPRIGHT - Resources, Rights and Capabilities, towards a social foundation for Europe 2010
  5. Bayerische Akademie der Wissenschaften: Strategische Prozessführung. Dienst an der Gesellschaft oder Missbrauch der Gerichte?
  6. Konzeptionelle Äquivalenz der Kompetenzmessung in Mathematik in der Primarstufe zwischen NEPS, TIMSS und den Bildungsstandards
  7. Die Deutschdidaktik und die Musikdidaktik. Anmerkungen eines Sprachdidaktikers zum Tagungsthema "Perspektiven der Musikdidaktik"
  8. Wer entscheidet unter welchen Bedingungen über die Nominierung von Kandidaten?' Die Kandidatenaufstellung zur Bundestagswahl 2009
  9. 13. Jahrestagung des Arbeitskreises ,,Wahlen und politische Einstellungen'' der Deutschen Vereinigung für Politikwissenschaften - 2010
  10. MEPs on the Web - different from national MPs or just the same? Socialisation and the new digital media in the European Parliament
  11. How to support teachers to give feedback to modelling tasks effectively? Results from a teacher training study in the COCA project
  12. Healingo Fit – eine gamifizierte Webanwendung zur Förderung der körperlichen Aktivität. Überblick und erste Evaluationsergebnisse
  13. COCA: Conditions and consequences of classroom assessment. Formatives Assessment in einem kompetenzorientierten Mathema-tikunterricht.
  14. Projektvorstellung: Lernprozessbegleitende Diagnostik und lernförderliche Leistungsrückmeldung im inklusiven Fachunterricht (LERN-IF)
  15. Spam mail: Promotional genres revisted (2nd Inter-Varietal Applied Corpus Studies (IVACS) Group International Conference, Belfast, Irland)
  16. Co²CA: Conditions and Consequences of Classroom Assessment. Projektübersicht im Rahmen des SPP-Jahreskolloquiums 2013 in Frankfurt (Main)

Publikationen

  1. Why phubbing is toxic for your relationship: Understanding the role of smartphone jealousy among "Generation Y" users
  2. Spurengaremissionen (N20, NH3) und Ertragsentwicklung nach Gärrestapplikation auf einem Marschstandort Norddeutschlands
  3. Teachers' content knowledge and pedagogical content knowledge: The role of structural differences in teacher education
  4. Rezension: Die Instabilität der Praxis. Reproduktion und Transformation des Sozialen in der Praxistheorie (Hilmar Schäfer)
  5. Demokratisierung gesellschaftlicher Naturverhältnisse im Spannungsfeld von Politisierung und Entpolitisierungsprozessen
  6. Loewenheim, Ulrich/Meessen, Karl M./Riesenkampff, Alexander (Hrsg.) , Kartellrecht Kommentar, Band 1: Europäisches Recht, Band 2: GWB
  7. Temporäre Durchbrechung des Vorrangs des europäischen Gemeinschaftsrechts beim Vorliegen „inakzeptabler Regelungslücken“ ?
  8. Network access charges, vertical integration, and property rights structure-experiences from the German electricity markets
  9. The role of plant biodiversity in modifying the structure and functioning of higher tropic Levels in species-rich forests
  10. La reaction allemande face aux mesures prises par l´OCDE en matieres de conventions fiscales in La fin des paradis fiscaux
  11. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame
  12. Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute?
  13. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands
  14. Entscheidungsbäume und bestärkendes Lernen zur dynamischen Auswahl von Reihenfolgeregeln in einem flexiblen Produktionssystem
  15. OKBQA framework towards an open collaboration for development of natural language question-answering systems over knowledge bases
  16. Gone with the wind? - Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply
  17. Modelling scenarios to identify a combined sediment-water management strategy for the large reservoirs of the Tuyamuyun hydro-complex