Efficient and accurate ℓ p-norm multiple kernel learning

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

  • Marius Kloft
  • Ulf Brefeld
  • Soren Sonnenburg
  • Pavel Laskov
  • Klaus Robert Müller
  • Alexander Zien

Learning linear combinations of multiple kernels is an appealing strategy when the right choice of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse kernel combinations to support interpretability. Unfortunately, ℓ 1-norm MKL is hardly observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures, we generalize MKL to arbitrary ℓ p-norms. We devise new insights on the connection between several existing MKL formulations and develop two efficient interleaved optimization strategies for arbitrary p > 1. Empirically, we demonstrate that the interleaved optimization strategies are much faster compared to the traditionally used wrapper approaches. Finally, we apply ℓp-norm MKL to real-world problems from computational biology, showing that non-sparse MKL achieves accuracies that go beyond the state-of-the-art.

OriginalspracheEnglisch
TitelAdvances in Neural Information Processing Systems 22 : Proceedings of the 23rd Annual Conference on Neural Information Processing Systems 2009
HerausgeberYoshua Bengio, Dale Schuurmans, John Lafferty, Chris Williams, Aron Culotta
Anzahl der Seiten9
VerlagNeural Information Processing Systems
Erscheinungsdatum2009
Seiten997-1005
ISBN (Print)978-161567911-9
PublikationsstatusErschienen - 2009
Extern publiziertJa
Veranstaltung23rd Annual Conference on Neural Information Processing Systems, NIPS 2009 - Hyatt Regency Vancouver, Vancouver, BC, Kanada
Dauer: 07.12.200910.12.2009
Konferenznummer: 23
https://nips.cc/Conferences/2009