A Structure and Content Prompt-based Method for Knowledge Graph Question Answering over Scholarly Data
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Answering scholarly questions is challenging without the help of query-based systems. Thus, we develop a divide-and-conquer approach based on a Large Language Model (LLM) for scholarly Knowledge Graph (KG) Question Answering (QA). Our system integrates the KG ontology into the LLM prompts and leverages a hybrid prompt learning strategy with both query structure and content. Our experiments suggest that given an ontology of a specific KG, LLMs are capable of automatically choosing the corresponding classes or predicates required to generate a target SPARQL query from a natural language question. Our approach shows state-of-the-art results over one scholarly KGQA dataset, namely sciQA [1].
Originalsprache | Englisch |
---|---|
Titel | Joint Proceedings of Scholarly QALD 2023 and SemREC 2023 co-located with 22nd International Semantic Web Conference ISWC 2023 : Athens, Greece, November 6-10, 2023 |
Herausgeber | Debayan Banerjee, Ricardo Usbeck, Nandana Mihindukulasooriya, Mohamad Yaser Jaradeh, Sören Auer, Gunjan Singh, Raghava Mutharaju, Pavan Kapanipathi |
Anzahl der Seiten | 7 |
Band | 3592 |
Erscheinungsort | Aachen |
Verlag | Rheinisch-Westfälische Technische Hochschule Aachen |
Erscheinungsdatum | 14.12.2023 |
Aufsatznummer | 3 |
Publikationsstatus | Erschienen - 14.12.2023 |
Veranstaltung | Scholarly QALD 2023 - Athen, Griechenland Dauer: 06.11.2023 → 10.11.2023 Konferenznummer: 1 https://ceur-ws.org/Vol-3592/ |
Bibliographische Notiz
Publisher Copyright:
© 2023 CEUR-WS. All rights reserved.
- Informatik