Bridge-Generate: Scholarly Hybrid Question Answering

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Answering scholarly hybrid questions requires access to bibliographic facts stored in structured data, such as a Knowledge Graph (KG) and textual information. Existing Scholarly Hybrid Question Answering (SHQA) approaches rely on retrieving KG triples and documents from the Wikipedia text corpus and prompt an LLM (Large Language Model) for answers. However, the retrieval is heavily keyword-based, introducing noise into the context. Furthermore, despite detecting the entities in the question, the models do not attempt any question analysis. Therefore, we propose a new SHQA system that employs a bridge-generate approach. During the bridge phase, our system recursively identifies entity-encapsulating phrases within the question and resolves the entities leveraging the underlying KGs. It then formulates assertion statements based on the resolved entities and their corresponding phrases. In the generation phase, the system auto-generates context guided by the question and the assertions. Finally, it returns an answer prompting an LLM with the generated context, the assertions, and the question. Our approach outperforms previous approaches, addressing the identified gaps.
OriginalspracheEnglisch
TitelWWW Companion’25 : Companion Proceedings of the ACM Web Conference 2025, April 28-May 2, 2025 Sydney, NSW, Australia
HerausgeberGuodong Long, Michale Blumestein, Yi Chang, Liane Lewin-Eytan, Helen Huang, Elad Yom-Tov
Anzahl der Seiten5
ErscheinungsortNew York
VerlagAssociation for Computing Machinery, Inc
Erscheinungsdatum2025
Seiten1321-1325
ISBN (elektronisch)979-8-4007-1331-6
DOIs
PublikationsstatusErschienen - 2025
VeranstaltungACM Web Conference 2025 - Sydney, Australien
Dauer: 28.04.202502.05.2025