Institut für Mathematik und ihre Didaktik

Organisation: Institut

Organisationsprofil

Das Institut für Mathematik und ihre Didaktik (IMD) bildet vor allem Studierende in den Lehramtsstudiengängen für das Fach Mathematik aus.

An der Leuphana kann Mathematik für das Lehramt an Grund-, Haupt- und Realschulen sowie an Berufsbildenden Schulen (Fachrichtungen Sozialpädagogik und Wirtschaftspädagogik) studiert werden.

Unser Schwerpunkt liegt in der Verzahnung von Theorie und Praxis des Mathematikunterrichts durch inter- und transdisziplinäre Forschung einerseits und Professionalisierung von Lehrerinnen und Lehrern andererseits. 

Forschungsschwerpunkte

Das Institut für Mathematik und ihre Didaktik diskutiert im Rahmen wissenschaftlicher Tätigkeiten und Forschungsprojekte sowohl fachmathematische als auch mathematikdidaktische Fragen (bildungs-)wissenschaftlicher Diskurse.

Konkret ergeben sich derzeit folgende Forschungsschwerpunkte des Instituts:

  • Mathematikdidaktischer Schwerpunkt:
    Das Institut setzt sich auf theoretischer und empirischer Ebene mit zentralen Fragen des Lehrens und Lernens von Mathematik auseinander. Zu dieser Auseinandersetzung gehört die wissenschaftliche Diskussion sowohl von Voraussetzungen, Genese und Gelingensbedingungen (außer-)schulischer Lehr-Lern-Prozesse im Speziellen, als auch von - sich stets im Wandel befindlichen - bildungspolitischen Rahmenbedingungen von Bildungsprozessen und deren Implikationen für das Lehren und Lernen von Mathematik im Allgemeinen. Die Forschungsaktivitäten erstrecken sich dabei sowohl über verschiedene Schulstufen (bspw. Primarstufe und Sekundarstufe), als auch über verschiedene Bildungsinstitutionen (bspw. allgemeinbildende Schulen und Hochschulen).
  • Allgemeindidaktischer Schwerpunkt:
    Ganz im Sinne der inter- und transdisziplinären Ausrichtung der Leuphana Universität Lüneburg beschäftigten sich die Wissenschaftler*innen des Instituts nicht nur mit mathematikdidaktischen Themen, sondern auch mit einer Vielzahl an innovativen Fragestellungen, die aufgrund ihrer inhaltlichen und strukturellen Komplexität nur in disziplinübergreifenden Zusammenhängen adäquat untersucht werden können. Hierzu zählen u.a. universitäre Zulassungsverfahren und digitale Lehrformate, adaptive Lernunterstützung, Erklärvideos, Sprache im Fachunterricht, ... . Entsprechend ist das Institut in den beiden überfakultären Forschungszentren ZZL (Zukunftszentrum Lehrkräftebildung) und ERLE (Empirical Research on Language and Education) vertreten.
  • Fachmathematischer Schwerpunkt:
    Die Forschungsinteressen in der Angewandten Mathematik liegen schwerpunktmäßig im Bereich „Computational Dynamics“. Insbesondere werden theoretische, numerische und datenbasierte Konzepte zur Analyse dynamischer Systeme entwickelt. Diese werden in interdisziplinärer Zusammenarbeit zur Lösung realer Probleme, beispielsweise in der Strömungsmechanik oder Verfahrenstechnik, angewendet.
  1. 2021
  2. Erschienen

    Stützpunkte als Kern des Größenverständnisses und Grundlage des Schätzens

    Ruwisch, S., 2021, Beiträge zum Mathematikunterricht 2021: vom GDM-Monat 2021 der Gesellschaft für Didaktik der Mathematik (GDM) ; (1.-25. März 2021). Hein, K., Heil, C., Ruwisch, S. & Prediger, S. (Hrsg.). Münster: WTM - Verlag für wissenschaftliche Texte und Medien, S. 317-320 4 S.

    Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschung

  3. Erschienen

    Stützpunkte kennen, vorstellen und nutzen: Von der Kenntnis der Größe einzelner Objekte zum Nutzen eines Netzes von Stützpunktvorstellungen

    Ruwisch, S., 2021, in: Grundschule Mathematik. 69, S. 2-3 2 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeTransferbegutachtet

  4. Erschienen

    Vergleichen, messen, schätzen

    Ruwisch, S., 2021, in: Grundschule Mathematik. 69, S. 36 1 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeTransferbegutachtet

  5. Erschienen

    Vorwort der Herausgeberinnen

    Hein, K., Heil, C., Ruwisch, S. & Prediger, S., 2021, Beiträge zum Mathematikunterricht 2021: vom GDM-Monat 2021 der Gesellschaft für Didaktik der Mathematik (GDM) ; (1.-25. März 2021). Hein, K., Heil, C., Ruwisch, S. & Prediger, S. (Hrsg.). Münster: WTM - Verlag für wissenschaftliche Texte und Medien, S. i - ii 2 S.

    Publikation: Beiträge in SammelwerkenAndere (Vor- und Nachworte ...)Forschung

  6. Erschienen

    Warum nicht Größenvorstellungen? Stützpunkte als Teil der Grundvorstellungen zu „Größen und Messen“

    Ruwisch, S., 2021, in: Grundschule Mathematik. 69, S. 32 - 35 4 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeTransferbegutachtet

  7. 2020
  8. Erschienen

    Kürzeste Wege im Dreieck

    Guder, K.-U., 12.2020, in: Grundschule Mathematik. 67, S. 37 1 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeTransfer

  9. Erschienen

    Verstehensprozesse bei der Bearbeitung realitätsbezogener Mathematikaufgaben: Klassische Textaufgaben vs. Zeitungstexte

    Plath, J., 01.10.2020, in: Journal fur Mathematik-Didaktik. 41, 2, S. 237-266 30 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  10. Erschienen

    Bereit für Flexibilität? Operationsverständnis und verschiedene Rechenstrategien als Grundlage für Flexibilität

    Ruwisch, S., 09.2020, in: Grundschule Mathematik. 66, S. 4-7 4 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeTransferbegutachtet

  11. Erschienen
  12. Erschienen

Zuletzt angesehen

Publikationen

  1. Factorial Validity of the Anxiety Questionnaire for Students (AFS)
  2. Working time preferences and early and late retirement intentions
  3. Anonymized Firm Data under Test: Evidence from a Replication Study
  4. Female Chief Financial Officers (CFOs) and Environmental Decoupling. The moderating impact of Sustainability Board Committees
  5. Income distribution and willingness to pay for ecosystem services
  6. Wirkungen der Beschäftigungspflicht schwerbehinderter Arbeitnehmer
  7. Consistent drivers of plant biodiversity across managed ecosystems
  8. Freie Berufe im Mikrozensus II - Einkommen und Einkommensverteilung
  9. Transfer operator-based extraction of coherent features on surfaces
  10. Offline question answering over linked data using limited resources
  11. Foraging wireworms are attracted to root-produced volatile aldehydes
  12. Machine vision system errors for unmanned aerial vehicle navigation
  13. Employing a Novel Metaheuristic Algorithm to Optimize an LSTM Model
  14. Prospective material flow analysis of the end-of-life decommissioning
  15. Climate change and modelling of extreme temperatures in Switzerland
  16. Humane Orientation as a New Cultural Dimension of the GLOBE Project:
  17. Measurement approaches for inigrated reporting adoption and quality
  18. Detection of oscillations with application in the pantograph control
  19. Intensity of Time and Income Interdependent Multidimensional Poverty:
  20. Abundance of large old trees in wood-pastures of Transylvania (Romania)
  21. Drawing as a Generative Activity and Drawing as a Prognostic Activity
  22. Credit frictions, selection into external finance and gains from trade
  23. Lagrangian analysis of long-term dynamics of turbulent superstructures
  24. The Rise and Fall of Electricity Distribution Cooperatives in Germany
  25. Web-based depression treatment for type 1 and type 2 diabetic patients
  26. Assessing Printability Maps in Additive Manufacturing of Metal Alloys