Two model formulations for gradient crystal plasticity
Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
Authors
The purpose of the current work is the formulation of two different (algorithmic) models for multiscale inelastic materials whose behavior is influenced by the evolution of inelastic microstructure and the corresponding material or internal lengthscales. The two models are compared with each other, depending in particular on how the inelastic deformation and dislocation density are modeled. The work is a first extension of the investigation in Klusemann et al. [1] to two‐dimensions. In the first model, the corresponding displacement and inelastic local deformation are modeled as global via weak field relations, and the dislocation density is a local quantity and solved for via a strong field relation. In the second model, displacement and dislocation density are modeled as global, and the inelastic deformation as local, in this sense. The influence for the modeling results is discussed. (© 2012 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Original language | English |
---|---|
Title of host publication | 83rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) |
Editors | H.-D. Alber, N. Kraynyukova, C. Tropea |
Number of pages | 4 |
Publisher | Wiley-VCH Verlag |
Publication date | 2012 |
Pages | 815-818 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
Event | 83rd Annual Meeting of the International Association of Applied Mathematics and Mechanics - GAMM2013 - Darmstadt, Germany Duration: 01.01.2013 → … Conference number: 83 |
- Engineering