Graph Conditional Variational Models: Too Complex for Multiagent Trajectories?

Research output: Journal contributionsConference article in journalResearchpeer-review

Authors

Recent advances in modeling multiagent trajectories combine graph architectures such as graph neural networks (GNNs) with conditional variational models (CVMs) such as variational RNNs (VRNNs). Originally, CVMs have been proposed to facilitate learning with multi-modal and structured data and thus seem to perfectly match the requirements of multi-modal multiagent trajectories with their structured output spaces. Empirical results of VRNNs on trajectory data support this assumption. In this paper, we revisit experiments and proposed architectures with additional rigour, ablation runs and baselines. In contrast to common belief, we show that prior results with CVMs on trajectory data might be misleading. Given a neural network with a graph architecture and/or structured output function, variational autoencoding does not seem to contribute statistically significantly to empirical performance. Instead, we show that well-known emission functions do contribute, while coming with less complexity, engineering and computation time.
Original languageEnglish
JournalProceedings of Machine Learning Research
Volume137
Pages (from-to)136-147
Number of pages12
ISSN2640-3498
Publication statusPublished - 2020
Event34rd Conference on Neural Information Processing Systems - NeurIPS 2020: Neural Information Processing Systems Online Conference 2020 - digital
Duration: 06.12.202012.12.2020
Conference number: 34
https://neurips.cc/virtual/2020/public/index.html
https://proceedings.mlr.press/v137/

Bibliographical note

Publisher Copyright:
© Proceedings of Machine Learning Research 2020.

Recently viewed

Publications

  1. Understanding self-disclosure on social networking sites - a literature review
  2. Zu Theorie und Praxis der Förderung mathematisch begabter Grundschüler(innen)
  3. Does cognitive load moderate the seductive details effect? A multimedia study
  4. Optimal verfehlt! Dem Phänomen Selftracking bildungsphilosophisch nachgedacht
  5. Institutional dual ownership and voluntary greenhouse gas emission disclosure
  6. Non-invasive approaches for phenotyping of enhanced performance traits in bean
  7. N:P Ratio and the Nature of Nutrient Limitation in Calluna-Dominated Heathlands
  8. Kulturwissenschaftliche Forschung – Einflüsse von Digitalisierung und Internet
  9. The Structure and Behavioural Effects of Revealed Social Identity Preferences
  10. Reality tv und reality computing - von der wundersamen Vermehrung der Realität
  11. Vertrauensaufbau zwischen geflüchteten Eltern und frühpädagogischen Angeboten
  12. The Effects of Psychotherapy on Depression Among Racial-Ethnic Minority Groups
  13. Friction analyses in twisted and helical profile extrusion of aluminum alloys
  14. Vom „rights-based approach" zum "solution-based approach" in der WTO-Streitbeilegung?
  15. Graph-based Approaches for Analyzing Team Interaction on the Example of Soccer
  16. Zur Abkehr von Souverän und Natur in Alfred Döblins "Berge, Meere und Giganten"
  17. Struktur eines Instruments zur Kompetenzerfassung in der Sportlehrerausbildung
  18. Einfluss der Gender Diversity im Aufsichtsrat auf die externe Abschlussprüfung
  19. Vom schwierigen Vergnügen einer Kommunikation über die Idee der Nachhaltigkeit
  20. Prüfung der nichtfinanziellen Erklärung nach dem CSR-Richtlinie-Umsetzungsgesetz
  21. Assessing the Sustainability Performance of Sustainability Management Software
  22. Einfluss der Gender Diversity im Aufsichtsrat auf die externe Abschlussprüfung.
  23. Partizipation von Kindern und Jugendlichen in Stadtplanung und Dorfentwicklung