Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris? / Temperton, Victoria M.; Millard, Peter; Jarvis, Paul G.
In: Global Change Biology, Vol. 9, No. 2, 01.02.2003, p. 286-294.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{9d0d8ce842cb476ebb8e6a8241f3ef13,
title = "Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?",
abstract = "Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.",
keywords = "Alnus glutinosa, Elevated carbon dioxide, Nitrogen cycling, Nitrogen remobilisation, Pinus sylvestris, Biology, Ecosystems Research",
author = "Temperton, {Victoria M.} and Peter Millard and Jarvis, {Paul G.}",
year = "2003",
month = feb,
day = "1",
doi = "10.1046/j.1365-2486.2003.00568.x",
language = "English",
volume = "9",
pages = "286--294",
journal = "Global Change Biology",
issn = "1354-1013",
publisher = "Wiley-Blackwell Publishing Ltd.",
number = "2",

}

RIS

TY - JOUR

T1 - Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?

AU - Temperton, Victoria M.

AU - Millard, Peter

AU - Jarvis, Paul G.

PY - 2003/2/1

Y1 - 2003/2/1

N2 - Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.

AB - Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.

KW - Alnus glutinosa

KW - Elevated carbon dioxide

KW - Nitrogen cycling

KW - Nitrogen remobilisation

KW - Pinus sylvestris

KW - Biology

KW - Ecosystems Research

UR - http://www.scopus.com/inward/record.url?scp=0037293610&partnerID=8YFLogxK

U2 - 10.1046/j.1365-2486.2003.00568.x

DO - 10.1046/j.1365-2486.2003.00568.x

M3 - Journal articles

AN - SCOPUS:0037293610

VL - 9

SP - 286

EP - 294

JO - Global Change Biology

JF - Global Change Biology

SN - 1354-1013

IS - 2

ER -

Recently viewed

Researchers

  1. Birgit Többen

Publications

  1. Crises and Entrepreneurial Opportunities
  2. Angst
  3. Running off the road
  4. Ultimate Biodegradation and Elimination of Antibiotics in Inherent Tests
  5. Phasing out and in
  6. Collective intentionality in entrepreneurship-as-practice
  7. Dynamische Bestandsdimensionierung
  8. Media Freedom and the Escalation of State Violence
  9. Begriff und Merkmale junger Unternehmen
  10. DaF-Lernen außerhalb des Klassenraums
  11. Prices, Self-Interests, and the "Invisible Hand" - Reviewing Ethical Foundations of Economic Concepts in Times of Crisis
  12. The Connected Classroom
  13. Remaking Media Practices
  14. Introduction of non-native Douglas fir reduces leaf damage on beech saplings and mature trees in European beech forests
  15. Spatial planning and territorial governance
  16. Personaltheorie als Beitrag zur Theorie der Unternehmung
  17. Dispute and morality in the perception of societal risks: extending the psychometric model
  18. Interactive effects among ecosystem services and management practices on crop production
  19. A Web-Based Stress Management Intervention for University Students in Indonesia (Rileks)
  20. DeFacto - Temporal and multilingual deep fact validation
  21. Restoring the human capacity for conserving biodiversity
  22. Sustainable Corporate Governance
  23. Friede den Völkern
  24. Principles for knowledge co-production in sustainability research
  25. One Size fits None
  26. From negative to positive sustainability performance measurement and assessment? A qualitative inquiry drawing on framing effects theory
  27. Tausch, Technik, Krieg
  28. Trace Metal Dynamics in Floodplain Soils of the River Elbe: A Review (vol 38, pg 1349)
  29. Preferences and policy - Consuming art and culture in Baltimore and Hamburg
  30. Ronald F. Inglehart
  31. The snow crab dispute on the continental shelf of Svalbard
  32. An Adaptive Lyapunovs Internal PID Regulator in Automotive Applications
  33. Smartphone = Smart Learning? Englischlernen per App und Co.