Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris? / Temperton, Victoria M.; Millard, Peter; Jarvis, Paul G.
in: Global Change Biology, Jahrgang 9, Nr. 2, 01.02.2003, S. 286-294.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{9d0d8ce842cb476ebb8e6a8241f3ef13,
title = "Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?",
abstract = "Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.",
keywords = "Alnus glutinosa, Elevated carbon dioxide, Nitrogen cycling, Nitrogen remobilisation, Pinus sylvestris, Biology, Ecosystems Research",
author = "Temperton, {Victoria M.} and Peter Millard and Jarvis, {Paul G.}",
year = "2003",
month = feb,
day = "1",
doi = "10.1046/j.1365-2486.2003.00568.x",
language = "English",
volume = "9",
pages = "286--294",
journal = "Global Change Biology",
issn = "1354-1013",
publisher = "Wiley-Blackwell Publishing Ltd.",
number = "2",

}

RIS

TY - JOUR

T1 - Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?

AU - Temperton, Victoria M.

AU - Millard, Peter

AU - Jarvis, Paul G.

PY - 2003/2/1

Y1 - 2003/2/1

N2 - Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.

AB - Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.

KW - Alnus glutinosa

KW - Elevated carbon dioxide

KW - Nitrogen cycling

KW - Nitrogen remobilisation

KW - Pinus sylvestris

KW - Biology

KW - Ecosystems Research

UR - http://www.scopus.com/inward/record.url?scp=0037293610&partnerID=8YFLogxK

U2 - 10.1046/j.1365-2486.2003.00568.x

DO - 10.1046/j.1365-2486.2003.00568.x

M3 - Journal articles

AN - SCOPUS:0037293610

VL - 9

SP - 286

EP - 294

JO - Global Change Biology

JF - Global Change Biology

SN - 1354-1013

IS - 2

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors
  2. Correlation between mechanical behaviour and microstructure in the Mg-Ca-Si-Sr system for degradable biomaterials based on thermodynamic calculations
  3. Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys in Vitro
  4. Book Review: The Third Sector in Europe, edited by Adalbert Evers and jean-Louis Laville. Publisher: Edward Elgar Publishing Limited, 2004. ISBN: 1843764008
  5. A modified epitope identified for generation and monitoring of PSA-specific T cells in patients on early phases of PSA-based immunotherapeutic protocols
  6. Verfahren und Vorrichtung zur kombinierten Herstellung von Bauteilen mittels inkrementeller Blechumformung und additiver Verfahren in einer Aufspannung
  7. Verfahren zur Herstellung thermoplastischer Faser-Metall-Laminat-Bauteile mittels Umformverfahren sowie entsprechend hergestellte Faser-Metall-Laminat-Bauteile
  8. Finite element based determination and optimization of seam weld positions in porthole die extrusion of double hollow profile with asymmetric cross section
  9. Bildungsbiographische Aspekte von Qualifikationsaneignungen und -verwendungen im Erwerbsleben von Frauen im Berufsbereich personenbezogener Dienstleistungen
  10. Abbildung des Werkstoffverhaltens von ferritischem Stahl in numerischen Modellen zur Darstellung von Blechmassivumformprozessen bei zyklischen Belastungspfaden
  11. Ultrasonic stirring as a production process for nanoparticle reinforced magnesium alloys and the compression creep response of ZE10 reinforced with ceria nanoparticles
  12. Mikrosensorsystem zur Gleichzeitigen Messung und Bestimmung von Konzentrationen in 3-komponentenmischungen für die Qualitätssicherung der Getränkeindustrie (Alkopopsgetränke)
  13. Elke Endert: Über die emotionale Dimension sozialer Prozesse. Die Theorie der Affektlogik am Beispiel der Rechtsextremismus- und Nationalsozialismusforschung. Konstanz: UVK 2006
  14. Uhl, Manfred: Verfassungen in den politischen Systemtransformationen Osteuropas. Die postsozialistischen Verfassungsordnungen in der Russischen Föderation, Belarus und Lettland
  15. A Lyapunov Approach to Set the Parameters of a PI-Controller to Minimise Velocity Oscillations in a Permanent Magnet Synchronous Motor Using Chopper Control for Electrical Vehicles
  16. Vertrauen in sozialen Systemen und in der Unternehmensberatung. Eine Grundlagenanalyse und Hinweise für eine vertrauenssensible Beratungspraxis am Beispiel größerer mittelständischer Unternehmen
  17. Actuator- and/or sensor element for sleeve in medical field e.g. limb or joint fracture treatment, has nano-wires comprising nano-fibers, where element deforms and acquires dimensional change of nano-fibers via electrical signal
  18. Force measuring module for use in e.g. crutch for measurement of active force at patient lower arm during use of walking support in rehabilitation phase after e.g. leg injury, has transmission device transmitting value to evaluation device