Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris? / Temperton, Victoria M.; Millard, Peter; Jarvis, Paul G.
in: Global Change Biology, Jahrgang 9, Nr. 2, 01.02.2003, S. 286-294.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{9d0d8ce842cb476ebb8e6a8241f3ef13,
title = "Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?",
abstract = "Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.",
keywords = "Alnus glutinosa, Elevated carbon dioxide, Nitrogen cycling, Nitrogen remobilisation, Pinus sylvestris, Biology, Ecosystems Research",
author = "Temperton, {Victoria M.} and Peter Millard and Jarvis, {Paul G.}",
year = "2003",
month = feb,
day = "1",
doi = "10.1046/j.1365-2486.2003.00568.x",
language = "English",
volume = "9",
pages = "286--294",
journal = "Global Change Biology",
issn = "1354-1013",
publisher = "Wiley-Blackwell Publishing Ltd.",
number = "2",

}

RIS

TY - JOUR

T1 - Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?

AU - Temperton, Victoria M.

AU - Millard, Peter

AU - Jarvis, Paul G.

PY - 2003/2/1

Y1 - 2003/2/1

N2 - Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.

AB - Nitrogen-fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one-year-old-seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 μmol mol-1) and elevated [CO2] (700 μmol mol-1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen-fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N-labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June-August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994-1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C-biomass allocation away from the leaves towards the shoots (all above-ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2-fixing tree.

KW - Alnus glutinosa

KW - Elevated carbon dioxide

KW - Nitrogen cycling

KW - Nitrogen remobilisation

KW - Pinus sylvestris

KW - Biology

KW - Ecosystems Research

UR - http://www.scopus.com/inward/record.url?scp=0037293610&partnerID=8YFLogxK

U2 - 10.1046/j.1365-2486.2003.00568.x

DO - 10.1046/j.1365-2486.2003.00568.x

M3 - Journal articles

AN - SCOPUS:0037293610

VL - 9

SP - 286

EP - 294

JO - Global Change Biology

JF - Global Change Biology

SN - 1354-1013

IS - 2

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Effects of introspective vs. extraspective instruction in scaling of hedonic properties of flavouring ingredients by Chinese and German subjects
  2. Zusammenhänge zwischen einem gemeinsamen Unterricht und kognitiven und non-kognitiven Outcomes von Kindern ohne sonderpädagogischen Förderbedarf
  3. Effects of different video- or text-based reflection stimuli on pre-service teachers’ emotions, immersion, cognitive load and knowledge-based reasoning
  4. Perspektive Nachhaltigkeit: Zur beruflichen Zufriedenheit und Belastung von psychiatrischen Fachärzten in der ambulanten Versorgung in der Schweiz
  5. Die Bedeutung des pädagogisch-psychologischen Wissens für die Qualität der Klassenführung und den Lernzuwachs der Schüler/innen im Physikunterricht
  6. Valuing regulating services (climate regulation) from UK terrestrial ecosystems, Report to the Economics Team of the UK National Ecosystem Assessment
  7. An IAD framework analysis of minigrid institutions for sustainable rural electrification in East Africa
  8. Die Implementierung von Prüfungsausschüssen/Audit Committees des Aufsichts-rats/Board of Directors mit unabhängigen und finanzkompetenten Mitgliedern
  9. Vom Betrieb in die Domäne – Partizipative Entwicklung nachhaltigkeitsorientierter Lernaufgaben für die Berufsausbildung in der Lebensmittelindustrie
  10. Zusammenhänge der Klassenkomposition an Förderschulen und allgemeinen Schulen mit schulischen Kompetenzen, akademischem Selbstkonzept und Interesse
  11. Netzwerkbasierte Betrachtung von ko-konstruktiven Interaktionsprozessen im Unterricht – Ein Ansatz zur Beschreibung und Analyse von Angebot und Nutzung
  12. Comparing self-reported and O*NET-based assessments of job control as predictors of self-rated health for non-Hispanic whites and racial/ethnic minorities
  13. The effect of extrusion ratio and material flow on the mechanical properties of aluminum profiles solid state recycled from 6060 aluminum alloy chips
  14. Zum Einfluss des pädagogisch-psychologischen Professionswissens auf die Unterrichtsqualität und das situationale Interesse der Schülerinnen und Schüler.