Data based root cause analysis for improving logistic key performance indicators of a company’s internal supply chain

Research output: Journal contributionsConference article in journalResearchpeer-review

Standard

Data based root cause analysis for improving logistic key performance indicators of a company’s internal supply chain. / Schmidt, Matthias; Maier, Janine Tatjana; Härtel, Lasse.
In: Procedia CIRP, Vol. 86, 2020, p. 276-281.

Research output: Journal contributionsConference article in journalResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{855c4cc7c335488a9769bcdbbfb869ca,
title = "Data based root cause analysis for improving logistic key performance indicators of a company{\textquoteright}s internal supply chain",
abstract = "The manufacturing industry faces an increasingly complex and dynamic environment due to shorter product life cycles, advanced production structures and expanding customer services. It is imperative that logistic key performance indicators (KPIs) be considered along with product costs and product quality to obtain a competitive advantage. Numerous companies possess an internal supply chain that fails to meet logistic performance goals set by the management. The measurables for logistic performance include logistic KPIs such as delivery time as well as cost relevant figures including work-in-process or the utilization of employees. In a case of unsatisfactory logistic KPIs, it is pertinent to identify the root causes before attempting to rectify the situation. Increasing digitalization within industry means a substantial volume of confirmation data is available regarding the core processes of a company's internal supply chain. This study discloses a model-based analysis of confirmation data to identify the root causes of unsatisfactory logistic KPIs. A framework for the analysis is constructed by defining generic cause-and-effect relationships between the relevant logistic KPIs and influencing as well as disturbing factors. The results produced by the model-based analysis and the interpretation of the confirmation data show the occurring cause-and-effect relationships for particular use cases and deduce the root causes for insufficient logistic KPIs. From there, companies can develop and implement suitable steps to increase the logistic KPIs by focusing on the newly-identified root causes instead of non-related, but recurring, complications. A case study is included to show the practicality of the presented method. The root cause analysis provides the basis for advanced logistics controlling systems to automatically identify weak-points and propose counteractive measures and therefore continuously improve and adapt the supply chain to changing conditions.",
keywords = "Engineering, Cause-Effect-Relationships, Data Analysis, Logistic Key Performance Indicators",
author = "Matthias Schmidt and Maier, {Janine Tatjana} and Lasse H{\"a}rtel",
note = "Publisher Copyright: {\textcopyright} 2019 The Authors. Published by Elsevier B.V.; 7th International Academy for Production Engineering Global Web Conference - 2019 : Towards shifted production value stream patterns through inference of data, models, and technology, 7th CIRP Global Web Conference - 2019 ; Conference date: 16-10-2019 Through 18-10-2019",
year = "2020",
doi = "10.1016/j.procir.2020.01.023",
language = "English",
volume = "86",
pages = "276--281",
journal = "Procedia CIRP",
issn = "2212-8271",
publisher = "Elsevier B.V.",
url = "http://www.cirpe2019.com/",

}

RIS

TY - JOUR

T1 - Data based root cause analysis for improving logistic key performance indicators of a company’s internal supply chain

AU - Schmidt, Matthias

AU - Maier, Janine Tatjana

AU - Härtel, Lasse

N1 - Conference code: 7

PY - 2020

Y1 - 2020

N2 - The manufacturing industry faces an increasingly complex and dynamic environment due to shorter product life cycles, advanced production structures and expanding customer services. It is imperative that logistic key performance indicators (KPIs) be considered along with product costs and product quality to obtain a competitive advantage. Numerous companies possess an internal supply chain that fails to meet logistic performance goals set by the management. The measurables for logistic performance include logistic KPIs such as delivery time as well as cost relevant figures including work-in-process or the utilization of employees. In a case of unsatisfactory logistic KPIs, it is pertinent to identify the root causes before attempting to rectify the situation. Increasing digitalization within industry means a substantial volume of confirmation data is available regarding the core processes of a company's internal supply chain. This study discloses a model-based analysis of confirmation data to identify the root causes of unsatisfactory logistic KPIs. A framework for the analysis is constructed by defining generic cause-and-effect relationships between the relevant logistic KPIs and influencing as well as disturbing factors. The results produced by the model-based analysis and the interpretation of the confirmation data show the occurring cause-and-effect relationships for particular use cases and deduce the root causes for insufficient logistic KPIs. From there, companies can develop and implement suitable steps to increase the logistic KPIs by focusing on the newly-identified root causes instead of non-related, but recurring, complications. A case study is included to show the practicality of the presented method. The root cause analysis provides the basis for advanced logistics controlling systems to automatically identify weak-points and propose counteractive measures and therefore continuously improve and adapt the supply chain to changing conditions.

AB - The manufacturing industry faces an increasingly complex and dynamic environment due to shorter product life cycles, advanced production structures and expanding customer services. It is imperative that logistic key performance indicators (KPIs) be considered along with product costs and product quality to obtain a competitive advantage. Numerous companies possess an internal supply chain that fails to meet logistic performance goals set by the management. The measurables for logistic performance include logistic KPIs such as delivery time as well as cost relevant figures including work-in-process or the utilization of employees. In a case of unsatisfactory logistic KPIs, it is pertinent to identify the root causes before attempting to rectify the situation. Increasing digitalization within industry means a substantial volume of confirmation data is available regarding the core processes of a company's internal supply chain. This study discloses a model-based analysis of confirmation data to identify the root causes of unsatisfactory logistic KPIs. A framework for the analysis is constructed by defining generic cause-and-effect relationships between the relevant logistic KPIs and influencing as well as disturbing factors. The results produced by the model-based analysis and the interpretation of the confirmation data show the occurring cause-and-effect relationships for particular use cases and deduce the root causes for insufficient logistic KPIs. From there, companies can develop and implement suitable steps to increase the logistic KPIs by focusing on the newly-identified root causes instead of non-related, but recurring, complications. A case study is included to show the practicality of the presented method. The root cause analysis provides the basis for advanced logistics controlling systems to automatically identify weak-points and propose counteractive measures and therefore continuously improve and adapt the supply chain to changing conditions.

KW - Engineering

KW - Cause-Effect-Relationships

KW - Data Analysis

KW - Logistic Key Performance Indicators

UR - http://www.scopus.com/inward/record.url?scp=85081535643&partnerID=8YFLogxK

U2 - 10.1016/j.procir.2020.01.023

DO - 10.1016/j.procir.2020.01.023

M3 - Conference article in journal

VL - 86

SP - 276

EP - 281

JO - Procedia CIRP

JF - Procedia CIRP

SN - 2212-8271

T2 - 7th International Academy for Production Engineering Global Web Conference - 2019

Y2 - 16 October 2019 through 18 October 2019

ER -

Documents

DOI

Recently viewed

Publications

  1. Introduction: Habitual Action, Automaticity, and Control
  2. Legitimation problems of participatory processes in technology assessment and technology policy
  3. Nest site selection and the effects of land use in a multi-scale approach on the distribution of a passerine in an island arid environment
  4. Collaborative open science as a way to reproducibility and new insights in primate cognition research
  5. Effect of yttrium addition on lattice parameter, Young's modulus and vacancy of magnesium
  6. Self-perceived quality of life predicts mortality risk better than a multi-biomarker panel, but the combination of both does best
  7. Multifractality Versus (Mono-) Fractality as Evidence of Nonlinear Interactions Across Timescales
  8. Spatial Tests, Familiarity with the Surroundings, and Spatial Activity Experience
  9. Applied Conversation Analysis in Foreign Language Didactics
  10. Metamodelizing the Territory
  11. (De)Composing Public Value
  12. Internal forces in robotic manipulation and in general mechanisms using a geometric approach
  13. What role for frames in scalar conflicts?
  14. Vector Fields Autonomous Control for Assistive Mobile Robots
  15. Set-Oriented and Finite-Element Study of Coherent Behavior in Rayleigh-Bénard Convection
  16. Learning to rule
  17. Same but different? Measurement invariance of the PIAAC motivation-to-learn scale across key socio-demographic groups
  18. Conceptual Dimensions of Embodiment
  19. The link between in- and external rotation of the auditor and the quality of financial accounting and audit
  20. The conservation against development paradigm in protected areas
  21. Why a Systematic Investigation of Production Planning and Control Procedures is Needed for the Target-oriented Configuration of PPC
  22. Modeling Bolt Load Retention of Ca modified AS41 using compliance-creep method
  23. Bird's Response to Revegetation of Different Structure and Floristics-Are "Restoration Plantings" Restoring Bird Communities?
  24. Tracing Concepts