Rating Player Actions in Soccer
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
We present a data-driven model that rates actions of the player in soccer with respect to their contribution to ball possession phases. This study approach consists of two interconnected parts: (i) a trajectory prediction model that is learned from real tracking data and predicts movements of players and (ii) a prediction model for the outcome of a ball possession phase. Interactions between players and a ball are captured by a graph recurrent neural network (GRNN) and we show empirically that the network reliably predicts both, player trajectories as well as outcomes of ball possession phases. We derive a set of aggregated performance indicators to compare players with respect to. to their contribution to the success of their team.
| Originalsprache | Englisch | 
|---|---|
| Aufsatznummer | 682986 | 
| Zeitschrift | Frontiers in Sports and Active Living | 
| Jahrgang | 3 | 
| Anzahl der Seiten | 14 | 
| ISSN | 2642-9367 | 
| DOIs | |
| Publikationsstatus | Erschienen - 15.07.2021 | 
Bibliographische Notiz
Diese Publikation wurde gefördert durch den Open-Access-Publikationsfonds der Leuphana Universität Lüneburg.
- Informatik
 - Wirtschaftsinformatik
 
Fachgebiete
- Physiologie
 - Tourismus-, Freizeit- und Gastronomiemanagement
 - Orthopädie und Sportmedizin
 - Anthropologie
 - Öffentliche Gesundheit, Umwelt- und Arbeitsmedizin
 - Physiotherapie, Sporttherapie und Rehabilitation
 
ASJC Scopus Sachgebiete
- SDG 3 – Gute Gesundheit und Wohlergehen
 
