Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. / Kortmann, Felix; Hsu, Yi-Chen; Warnecke, Alexander et al.
2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 2020. 9294684 (2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Kortmann, F, Hsu, Y-C, Warnecke, A, Meier, N, Heger, J, Funk, B & Drews, P 2020, Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020., 9294684, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, IEEE - Institute of Electrical and Electronics Engineers Inc., Piscataway, 23rd IEEE International Conference on Intelligent Transportation 2020, Rhodes, Greece, 20.09.20. https://doi.org/10.1109/ITSC45102.2020.9294684

APA

Kortmann, F., Hsu, Y.-C., Warnecke, A., Meier, N., Heger, J., Funk, B., & Drews, P. (2020). Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020 Article 9294684 (2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020). IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ITSC45102.2020.9294684

Vancouver

Kortmann F, Hsu YC, Warnecke A, Meier N, Heger J, Funk B et al. Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc. 2020. 9294684. (2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020). doi: 10.1109/ITSC45102.2020.9294684

Bibtex

@inbook{0cf4c21554ad485a84acff07dcfb0ada,
title = "Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards",
abstract = "An important component for the realization of the automated driving task is a holistic environment model. Connected and Autonomous Vehicles (CAVs) must be capable of detecting other vehicles, road markings, dangerous obstacles and upcoming road conditions. Apart from the comfort dependency on the road condition, friction values are calculated on the basis of road properties, which in turn are relevant for e.g. breaking and safety distances of CAVs. Due to the substitution of the human control task by the machine, this information must in future be detected by the vehicle itself. Based on the existing Vehicle Level Sensors (VLSs) and Acceleration Sensors (ASs) data, which are standard components in modern vehicles, a machine-learning approach of determining road surface materials and road hazards is presented. Our software solution of determining different road surface materials as asphalt, concrete, cobblestone or gravel with a total accuracy of 92.36% is presented. Furthermore, the results of the road hazards detection as potholes and speed bumps with a total accuracy of 92.39% is stated. Additionally to the edge calculations in the vehicle, our idea resolves in connected vehicles being capable of classifying road conditions enabling them to provide road analyses to a cloud platform. The goal is to establish a holistic cloud solution for road conditions to enable CAVs for the consumption of road condition data of upcoming road segments and empower them to adjust to those.",
keywords = "Business informatics, Roads, Sensors, Hazards, Rough surfaces, Cloud computing, task analysis, wheels",
author = "Felix Kortmann and Yi-Chen Hsu and Alexander Warnecke and Nicolas Meier and Jens Heger and Burkhardt Funk and Paul Drews",
year = "2020",
month = sep,
day = "20",
doi = "10.1109/ITSC45102.2020.9294684",
language = "English",
isbn = "978-1-7281-4150-3",
series = "2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020",
publisher = "IEEE - Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020",
address = "United States",
note = "23rd IEEE International Conference on Intelligent Transportation 2020 ; Conference date: 20-09-2020 Through 23-09-2020",
url = "https://www.ieee-itsc2020.org/",

}

RIS

TY - CHAP

T1 - Creating Value from in-Vehicle Data

T2 - 23rd IEEE International Conference on Intelligent Transportation 2020

AU - Kortmann, Felix

AU - Hsu, Yi-Chen

AU - Warnecke, Alexander

AU - Meier, Nicolas

AU - Heger, Jens

AU - Funk, Burkhardt

AU - Drews, Paul

N1 - Conference code: 23

PY - 2020/9/20

Y1 - 2020/9/20

N2 - An important component for the realization of the automated driving task is a holistic environment model. Connected and Autonomous Vehicles (CAVs) must be capable of detecting other vehicles, road markings, dangerous obstacles and upcoming road conditions. Apart from the comfort dependency on the road condition, friction values are calculated on the basis of road properties, which in turn are relevant for e.g. breaking and safety distances of CAVs. Due to the substitution of the human control task by the machine, this information must in future be detected by the vehicle itself. Based on the existing Vehicle Level Sensors (VLSs) and Acceleration Sensors (ASs) data, which are standard components in modern vehicles, a machine-learning approach of determining road surface materials and road hazards is presented. Our software solution of determining different road surface materials as asphalt, concrete, cobblestone or gravel with a total accuracy of 92.36% is presented. Furthermore, the results of the road hazards detection as potholes and speed bumps with a total accuracy of 92.39% is stated. Additionally to the edge calculations in the vehicle, our idea resolves in connected vehicles being capable of classifying road conditions enabling them to provide road analyses to a cloud platform. The goal is to establish a holistic cloud solution for road conditions to enable CAVs for the consumption of road condition data of upcoming road segments and empower them to adjust to those.

AB - An important component for the realization of the automated driving task is a holistic environment model. Connected and Autonomous Vehicles (CAVs) must be capable of detecting other vehicles, road markings, dangerous obstacles and upcoming road conditions. Apart from the comfort dependency on the road condition, friction values are calculated on the basis of road properties, which in turn are relevant for e.g. breaking and safety distances of CAVs. Due to the substitution of the human control task by the machine, this information must in future be detected by the vehicle itself. Based on the existing Vehicle Level Sensors (VLSs) and Acceleration Sensors (ASs) data, which are standard components in modern vehicles, a machine-learning approach of determining road surface materials and road hazards is presented. Our software solution of determining different road surface materials as asphalt, concrete, cobblestone or gravel with a total accuracy of 92.36% is presented. Furthermore, the results of the road hazards detection as potholes and speed bumps with a total accuracy of 92.39% is stated. Additionally to the edge calculations in the vehicle, our idea resolves in connected vehicles being capable of classifying road conditions enabling them to provide road analyses to a cloud platform. The goal is to establish a holistic cloud solution for road conditions to enable CAVs for the consumption of road condition data of upcoming road segments and empower them to adjust to those.

KW - Business informatics

KW - Roads

KW - Sensors

KW - Hazards

KW - Rough surfaces

KW - Cloud computing

KW - task analysis

KW - wheels

UR - http://www.scopus.com/inward/record.url?scp=85099662575&partnerID=8YFLogxK

U2 - 10.1109/ITSC45102.2020.9294684

DO - 10.1109/ITSC45102.2020.9294684

M3 - Article in conference proceedings

SN - 978-1-7281-4150-3

T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

PB - IEEE - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

Y2 - 20 September 2020 through 23 September 2020

ER -

Recently viewed

Publications

  1. Methods in Writing Process Research
  2. Non-destructive transmissive inductive thickness sensor for IoT applications
  3. Composing with the terra fluida of interaction: new paths for CCO research as relational practice
  4. Doing statistics, enacting the nation
  5. Investigating Factors on R estorative Sleep Quality and its Relationship with Personal Work Performance - An Analysis of Diary Data
  6. Experimental Investigation of Efficiency and Deposit Process Temperature During Multi-Layer Friction Surfacing
  7. Secondary task as a measure of cognitive load
  8. The State of Multimedia Mass-Balance Modeling in Environmental science and decision-making
  9. Predicting recurrent chat contact in a psychological intervention for the youth using natural language processing
  10. Media Review: Extrapolations - A View from OS4F
  11. Combining Model Predictive and Adaptive Control for an Atomic Force Microscope Piezo-Scanner-Cantilever System
  12. Material system analysis
  13. The use of pseudo-causal narratives in EU policies
  14. Motivation for the Continuation of Work
  15. An optimal minimum phase approximating PD regulator for robust control of a throttle plate
  16. Agile Portfolio Management Patterns
  17. Investigating quality raters' performance using interface evaluation methods
  18. Introduction
  19. Enhancing the structural diversity between forest patches — A concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales
  20. Operation B
  21. Investigating the Promotional Effect of Green Signals in Sponsored Search Advertising Using Bayesian Parameter Estimation
  22. New Communications Technology in the Context of Interactive Sound Art
  23. A holistic view on security and collaboration in safe space
  24. On the Epistemology of Computer Simulation
  25. Behavior of microstructure and mechanical properties in the stir zone of friction stir welded ME21 magnesium alloy
  26. Empirical Studies with Micro-Data from Official Statistics in Germany