Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. / Kortmann, Felix; Hsu, Yi-Chen; Warnecke, Alexander et al.
2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 2020. 9294684 (2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Kortmann, F, Hsu, Y-C, Warnecke, A, Meier, N, Heger, J, Funk, B & Drews, P 2020, Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020., 9294684, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, IEEE - Institute of Electrical and Electronics Engineers Inc., Piscataway, 23rd IEEE International Conference on Intelligent Transportation 2020, Rhodes, Greece, 20.09.20. https://doi.org/10.1109/ITSC45102.2020.9294684

APA

Kortmann, F., Hsu, Y.-C., Warnecke, A., Meier, N., Heger, J., Funk, B., & Drews, P. (2020). Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020 Article 9294684 (2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020). IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ITSC45102.2020.9294684

Vancouver

Kortmann F, Hsu YC, Warnecke A, Meier N, Heger J, Funk B et al. Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc. 2020. 9294684. (2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020). doi: 10.1109/ITSC45102.2020.9294684

Bibtex

@inbook{0cf4c21554ad485a84acff07dcfb0ada,
title = "Creating Value from in-Vehicle Data: Detecting Road Surfaces and Road Hazards",
abstract = "An important component for the realization of the automated driving task is a holistic environment model. Connected and Autonomous Vehicles (CAVs) must be capable of detecting other vehicles, road markings, dangerous obstacles and upcoming road conditions. Apart from the comfort dependency on the road condition, friction values are calculated on the basis of road properties, which in turn are relevant for e.g. breaking and safety distances of CAVs. Due to the substitution of the human control task by the machine, this information must in future be detected by the vehicle itself. Based on the existing Vehicle Level Sensors (VLSs) and Acceleration Sensors (ASs) data, which are standard components in modern vehicles, a machine-learning approach of determining road surface materials and road hazards is presented. Our software solution of determining different road surface materials as asphalt, concrete, cobblestone or gravel with a total accuracy of 92.36% is presented. Furthermore, the results of the road hazards detection as potholes and speed bumps with a total accuracy of 92.39% is stated. Additionally to the edge calculations in the vehicle, our idea resolves in connected vehicles being capable of classifying road conditions enabling them to provide road analyses to a cloud platform. The goal is to establish a holistic cloud solution for road conditions to enable CAVs for the consumption of road condition data of upcoming road segments and empower them to adjust to those.",
keywords = "Business informatics, Roads, Sensors, Hazards, Rough surfaces, Cloud computing, task analysis, wheels",
author = "Felix Kortmann and Yi-Chen Hsu and Alexander Warnecke and Nicolas Meier and Jens Heger and Burkhardt Funk and Paul Drews",
year = "2020",
month = sep,
day = "20",
doi = "10.1109/ITSC45102.2020.9294684",
language = "English",
isbn = "978-1-7281-4150-3",
series = "2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020",
publisher = "IEEE - Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020",
address = "United States",
note = "23rd IEEE International Conference on Intelligent Transportation 2020 ; Conference date: 20-09-2020 Through 23-09-2020",
url = "https://www.ieee-itsc2020.org/",

}

RIS

TY - CHAP

T1 - Creating Value from in-Vehicle Data

T2 - 23rd IEEE International Conference on Intelligent Transportation 2020

AU - Kortmann, Felix

AU - Hsu, Yi-Chen

AU - Warnecke, Alexander

AU - Meier, Nicolas

AU - Heger, Jens

AU - Funk, Burkhardt

AU - Drews, Paul

N1 - Conference code: 23

PY - 2020/9/20

Y1 - 2020/9/20

N2 - An important component for the realization of the automated driving task is a holistic environment model. Connected and Autonomous Vehicles (CAVs) must be capable of detecting other vehicles, road markings, dangerous obstacles and upcoming road conditions. Apart from the comfort dependency on the road condition, friction values are calculated on the basis of road properties, which in turn are relevant for e.g. breaking and safety distances of CAVs. Due to the substitution of the human control task by the machine, this information must in future be detected by the vehicle itself. Based on the existing Vehicle Level Sensors (VLSs) and Acceleration Sensors (ASs) data, which are standard components in modern vehicles, a machine-learning approach of determining road surface materials and road hazards is presented. Our software solution of determining different road surface materials as asphalt, concrete, cobblestone or gravel with a total accuracy of 92.36% is presented. Furthermore, the results of the road hazards detection as potholes and speed bumps with a total accuracy of 92.39% is stated. Additionally to the edge calculations in the vehicle, our idea resolves in connected vehicles being capable of classifying road conditions enabling them to provide road analyses to a cloud platform. The goal is to establish a holistic cloud solution for road conditions to enable CAVs for the consumption of road condition data of upcoming road segments and empower them to adjust to those.

AB - An important component for the realization of the automated driving task is a holistic environment model. Connected and Autonomous Vehicles (CAVs) must be capable of detecting other vehicles, road markings, dangerous obstacles and upcoming road conditions. Apart from the comfort dependency on the road condition, friction values are calculated on the basis of road properties, which in turn are relevant for e.g. breaking and safety distances of CAVs. Due to the substitution of the human control task by the machine, this information must in future be detected by the vehicle itself. Based on the existing Vehicle Level Sensors (VLSs) and Acceleration Sensors (ASs) data, which are standard components in modern vehicles, a machine-learning approach of determining road surface materials and road hazards is presented. Our software solution of determining different road surface materials as asphalt, concrete, cobblestone or gravel with a total accuracy of 92.36% is presented. Furthermore, the results of the road hazards detection as potholes and speed bumps with a total accuracy of 92.39% is stated. Additionally to the edge calculations in the vehicle, our idea resolves in connected vehicles being capable of classifying road conditions enabling them to provide road analyses to a cloud platform. The goal is to establish a holistic cloud solution for road conditions to enable CAVs for the consumption of road condition data of upcoming road segments and empower them to adjust to those.

KW - Business informatics

KW - Roads

KW - Sensors

KW - Hazards

KW - Rough surfaces

KW - Cloud computing

KW - task analysis

KW - wheels

UR - http://www.scopus.com/inward/record.url?scp=85099662575&partnerID=8YFLogxK

U2 - 10.1109/ITSC45102.2020.9294684

DO - 10.1109/ITSC45102.2020.9294684

M3 - Article in conference proceedings

SN - 978-1-7281-4150-3

T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

PB - IEEE - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

Y2 - 20 September 2020 through 23 September 2020

ER -

Recently viewed

Publications

  1. Determinants of entrepreneurial intent: A meta-analytic test and integration of competing models
  2. Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa
  3. Erwiderung einer Erwiderung
  4. OPERATIONALIZING DIGITAL TRANSFORMATION FROM MULTIPLE PERSPECTIVES
  5. Large trees are keystone structures in urban parks
  6. The Framework for Inclusive Science Education
  7. The link between in- and external rotation of the auditor and the quality of financial accounting and external audit
  8. Organizing Events for Configuring and Maintaining Creative Fields
  9. Design of Reliable Remobilisation Finger Implants with Geometry Elements of a Triple Periodic Minimal Surface Structure via Additive Manufacturing of Silicon Nitride
  10. DEVELOPMENT OF AN INTEGRATIVE LOGISTICS MODEL FOR LINKING PLANNING AND CONTROL TASKS WITH LOGISTICAL VARIABLES ALONG THE COMPANY'S INTERNAL SUPPLY CHAIN.
  11. Why Fun Matters: In Search of Emergent Playful Experiences
  12. Reducing the peaking phenomenon in Luenberger observers in presence of quasi-static disturbances for linear time invariant systems
  13. Is Code Law? Kritik in Zeiten algorithmischer Gouvernementalität
  14. The global context and people at work: Special issue introduction
  15. Host functional and phylogenetic composition rather than host diversity structure plant–herbivore networks
  16. The language of situated joint activity: Social virtual reality and language learning in virtual exchange
  17. Belief in free will affects causal attributions when judging others’ behavior
  18. Introduction to Felipe Ehrenberg's "In Search of a Model for Life"
  19. University-linked programmes for sustainable entrepreneurship and regional development
  20. Programmierung einer DELTA-Roboterzelle nach PackML Standard
  21. Neural Networks for Energy Optimization of Production Processes in Small and Medium Sized Enterprises
  22. How leaders’ diversity beliefs alter the impact of faultlines on team functioning
  23. Experimental Tests for an Innovative Catamaran Prototype
  24. Experimental Verification of the Impact of Radial Internal Clearance on a Bearing's Dynamics
  25. Extrinsic Calibration Method under Low-Light Conditions for Hybrid Vision System
  26. Using a Bivariate Polynomial in an EKF for State and Inductance Estimations in the Presence of Saturation Effects to Adaptively Control a PMSM
  27. Acting in the Name of Others
  28. Optimal grazing management rules in semi-arid rangelands with uncertain rainfall
  29. Revisiting the tolerance limit of Fe impurity in biodegradable magnesium