Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention

Research output: Journal contributionsConference abstract in journalResearchpeer-review

Standard

Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention. / Bremer, Vincent; Chow, Philip; Funk, Burkhardt et al.
In: Sleep, Vol. 43, No. Supplement 1, 1204, 27.05.2020, p. A460.

Research output: Journal contributionsConference abstract in journalResearchpeer-review

Harvard

APA

Vancouver

Bremer V, Chow P, Funk B, Thorndike F, Ritterband L. Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention. Sleep. 2020 May 27;43(Supplement 1):A460. 1204. doi: 10.1093/sleep/zsaa056.1198

Bibtex

@article{8e1794a97dcc4ca8945bb78e569b8b5f,
title = "Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention",
abstract = "Intervention dropout is an important factor for the evaluation and implementation of digital therapeutics, including in insomnia. Large amounts of individualized data (logins, questionnaires, EMA data) in these interventions can combine to create user journeys - the data generated by the path an individual takes to navigate the digital therapeutic. User journeys can provide insight about how likely users are to drop out of an intervention on an individual level and lead to increased prediction performance. Thus, the goal of this study is to provide a step-by-step guide for the analysis of user journeys and utilize this guide to predict intervention dropout, illustrated with an example from a data in a RCT of digital therapeutic for chronic insomnia, for which outcomes have previously been published.MethodsAnalysis of user journeys includes data transformation, feature engineering, and statistical model analysis, using machine learning techniques. A framework is established to leverage user journeys to predict various behaviors. For this study, the framework was applied to predict dropouts of 151 participants from a fully automated web-based program (SHUTi) that delivered cognitive behavioral therapy for insomnia. For this task, support vector machines, logistic regression with regularization, and boosted decision trees were applied at different points in 9-week intervention. These techniques were evaluated based on their predictive performance.ResultsAfter model evaluation, a decision tree ensemble achieved AUC values ranging between 0.6-0.9 based on application of machine earning techniques. Various handcrafted and theory-driven features (e.g., time to complete certain intervention steps, time to get out of bed after arising, and days since last system interaction contributed to prediction performance.ConclusionResults indicate that utilizing a user journey framework and analysis can predict intervention dropout. Further, handcrafted theory-driven features can increase prediction performance. This prediction of dropout could lead to an enhanced clinical decision-making in digital therapeutics.SupportThe original study evaluating the efficacy of this intervention has been reported elsewhere and was funded by grant R01 MH86758 from the National Institute of Mental Health.",
keywords = "Business informatics, Health sciences",
author = "Vincent Bremer and Philip Chow and Burkhardt Funk and F Thorndike and Lee Ritterband",
note = "Abstract supplement; Annual Meeting of the Associated Professional Sleep Societies 2020 ; Conference date: 27-08-2020 Through 30-08-2020",
year = "2020",
month = may,
day = "27",
doi = "10.1093/sleep/zsaa056.1198",
language = "English",
volume = "43",
pages = "A460",
journal = "Sleep",
issn = "0161-8105",
publisher = "Oxford University Press",
number = "Supplement 1",
url = "https://www.sleepmeeting.org/",

}

RIS

TY - JOUR

T1 - Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention

AU - Bremer, Vincent

AU - Chow, Philip

AU - Funk, Burkhardt

AU - Thorndike, F

AU - Ritterband, Lee

N1 - Conference code: 34

PY - 2020/5/27

Y1 - 2020/5/27

N2 - Intervention dropout is an important factor for the evaluation and implementation of digital therapeutics, including in insomnia. Large amounts of individualized data (logins, questionnaires, EMA data) in these interventions can combine to create user journeys - the data generated by the path an individual takes to navigate the digital therapeutic. User journeys can provide insight about how likely users are to drop out of an intervention on an individual level and lead to increased prediction performance. Thus, the goal of this study is to provide a step-by-step guide for the analysis of user journeys and utilize this guide to predict intervention dropout, illustrated with an example from a data in a RCT of digital therapeutic for chronic insomnia, for which outcomes have previously been published.MethodsAnalysis of user journeys includes data transformation, feature engineering, and statistical model analysis, using machine learning techniques. A framework is established to leverage user journeys to predict various behaviors. For this study, the framework was applied to predict dropouts of 151 participants from a fully automated web-based program (SHUTi) that delivered cognitive behavioral therapy for insomnia. For this task, support vector machines, logistic regression with regularization, and boosted decision trees were applied at different points in 9-week intervention. These techniques were evaluated based on their predictive performance.ResultsAfter model evaluation, a decision tree ensemble achieved AUC values ranging between 0.6-0.9 based on application of machine earning techniques. Various handcrafted and theory-driven features (e.g., time to complete certain intervention steps, time to get out of bed after arising, and days since last system interaction contributed to prediction performance.ConclusionResults indicate that utilizing a user journey framework and analysis can predict intervention dropout. Further, handcrafted theory-driven features can increase prediction performance. This prediction of dropout could lead to an enhanced clinical decision-making in digital therapeutics.SupportThe original study evaluating the efficacy of this intervention has been reported elsewhere and was funded by grant R01 MH86758 from the National Institute of Mental Health.

AB - Intervention dropout is an important factor for the evaluation and implementation of digital therapeutics, including in insomnia. Large amounts of individualized data (logins, questionnaires, EMA data) in these interventions can combine to create user journeys - the data generated by the path an individual takes to navigate the digital therapeutic. User journeys can provide insight about how likely users are to drop out of an intervention on an individual level and lead to increased prediction performance. Thus, the goal of this study is to provide a step-by-step guide for the analysis of user journeys and utilize this guide to predict intervention dropout, illustrated with an example from a data in a RCT of digital therapeutic for chronic insomnia, for which outcomes have previously been published.MethodsAnalysis of user journeys includes data transformation, feature engineering, and statistical model analysis, using machine learning techniques. A framework is established to leverage user journeys to predict various behaviors. For this study, the framework was applied to predict dropouts of 151 participants from a fully automated web-based program (SHUTi) that delivered cognitive behavioral therapy for insomnia. For this task, support vector machines, logistic regression with regularization, and boosted decision trees were applied at different points in 9-week intervention. These techniques were evaluated based on their predictive performance.ResultsAfter model evaluation, a decision tree ensemble achieved AUC values ranging between 0.6-0.9 based on application of machine earning techniques. Various handcrafted and theory-driven features (e.g., time to complete certain intervention steps, time to get out of bed after arising, and days since last system interaction contributed to prediction performance.ConclusionResults indicate that utilizing a user journey framework and analysis can predict intervention dropout. Further, handcrafted theory-driven features can increase prediction performance. This prediction of dropout could lead to an enhanced clinical decision-making in digital therapeutics.SupportThe original study evaluating the efficacy of this intervention has been reported elsewhere and was funded by grant R01 MH86758 from the National Institute of Mental Health.

KW - Business informatics

KW - Health sciences

UR - https://academic.oup.com/sleep/article-abstract/43/Supplement_1/A460/5846921

U2 - 10.1093/sleep/zsaa056.1198

DO - 10.1093/sleep/zsaa056.1198

M3 - Conference abstract in journal

VL - 43

SP - A460

JO - Sleep

JF - Sleep

SN - 0161-8105

IS - Supplement 1

M1 - 1204

T2 - Annual Meeting of the Associated Professional Sleep Societies 2020

Y2 - 27 August 2020 through 30 August 2020

ER -

Recently viewed

Publications

  1. Performance analysis for loss systems with many subscribers and concurrent services
  2. TARGET SETTING FOR OPERATIONAL PERFORMANCE IMPROVEMENTS - STUDY CASE -
  3. Metaphors and Paradigms of the Language Animal—or—The Advantage of seeing “Time Is a Resource” as a Paradigm
  4. An Orthogonal Wavelet Denoising Algorithm for Surface Images of Atomic Force Microscopy
  5. Errors in Training Computer Skills
  6. Special Issue The Discourse of Redundancy Introduction
  7. A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study
  8. Eliciting Learner Perceptions of Web 2.0 Tasks through Mixed-Methods Classroom Research
  9. Using heuristic worked examples to promote solving of reality‑based tasks in mathematics in lower secondary school
  10. Developing a Complex Portrait of Content Teaching for Multilingual Learners via Nonlinear Theoretical Understandings
  11. The Replication Database: Documenting the Replicability of Psychological Science
  12. Need Satisfaction and Optimal Functioning at Leisure and Work: A Longitudinal Validation Study of the DRAMMA Model
  13. Assessment of cognitive load in multimedia learning using dual-task methodology
  14. Public Value: rethinking value creation
  15. How, when and why do negotiators use reference points?
  16. Employing A-B tests for optimizing prices levels in e-commerce applications
  17. An Integrative Framework of Environmental Management Accounting
  18. Machine Learning and Data Mining for Sports Analytics
  19. Between Recognition and Abstraction