Advanced Neural Classifier-Based Effective Human Assistance Robots Using Comparable Interactive Input Assessment Technique

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Advanced Neural Classifier-Based Effective Human Assistance Robots Using Comparable Interactive Input Assessment Technique. / Albekairi, Mohammed; Kaaniche, Khaled; Abbas, Ghulam et al.
In: Mathematics, Vol. 12, No. 16, 2500, 13.08.2024.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Albekairi M, Kaaniche K, Abbas G, Mercorelli P, Alanazi MD, Almadhor A. Advanced Neural Classifier-Based Effective Human Assistance Robots Using Comparable Interactive Input Assessment Technique. Mathematics. 2024 Aug 13;12(16):2500. doi: 10.3390/math12162500

Bibtex

@article{61da43349ef34732be37cccdc977148e,
title = "Advanced Neural Classifier-Based Effective Human Assistance Robots Using Comparable Interactive Input Assessment Technique",
abstract = "The role of robotic systems in human assistance is inevitable with the bots that assist with interactive and voice commands. For cooperative and precise assistance, the understandability of these bots needs better input analysis. This article introduces a Comparable Input Assessment Technique (CIAT) to improve the bot system{\textquoteright}s understandability. This research introduces a novel approach for HRI that uses optimized algorithms for input detection, analysis, and response generation in conjunction with advanced neural classifiers. This approach employs deep learning models to enhance the accuracy of input identification and processing efficiency, in contrast to previous approaches that often depended on conventional detection techniques and basic analytical methods. Regardless of the input type, this technique defines cooperative control for assistance from previous histories. The inputs are cooperatively validated for the instruction responses for human assistance through defined classifications. For this purpose, a neural classifier is used; the maximum possibilities for assistance using self-detected instructions are recommended for the user. The neural classifier is divided into two categories according to its maximum comparable limits: precise instruction and least assessment inputs. For this purpose, the robot system is trained using previous histories and new assistance activities. The learning process performs comparable validations between detected and unrecognizable inputs with a classification that reduces understandability errors. Therefore, the proposed technique was found to reduce response time by 6.81%, improve input detection by 8.73%, and provide assistance by 12.23% under varying inputs.",
keywords = "interactive classification, machine learning, neural networks, optimal control, robot systems, Engineering",
author = "Mohammed Albekairi and Khaled Kaaniche and Ghulam Abbas and Paolo Mercorelli and Alanazi, {Meshari D.} and Ahmad Almadhor",
note = "Publisher Copyright: {\textcopyright} 2024 by the authors.",
year = "2024",
month = aug,
day = "13",
doi = "10.3390/math12162500",
language = "English",
volume = "12",
journal = "Mathematics",
issn = "2227-7390",
publisher = "MDPI AG",
number = "16",

}

RIS

TY - JOUR

T1 - Advanced Neural Classifier-Based Effective Human Assistance Robots Using Comparable Interactive Input Assessment Technique

AU - Albekairi, Mohammed

AU - Kaaniche, Khaled

AU - Abbas, Ghulam

AU - Mercorelli, Paolo

AU - Alanazi, Meshari D.

AU - Almadhor, Ahmad

N1 - Publisher Copyright: © 2024 by the authors.

PY - 2024/8/13

Y1 - 2024/8/13

N2 - The role of robotic systems in human assistance is inevitable with the bots that assist with interactive and voice commands. For cooperative and precise assistance, the understandability of these bots needs better input analysis. This article introduces a Comparable Input Assessment Technique (CIAT) to improve the bot system’s understandability. This research introduces a novel approach for HRI that uses optimized algorithms for input detection, analysis, and response generation in conjunction with advanced neural classifiers. This approach employs deep learning models to enhance the accuracy of input identification and processing efficiency, in contrast to previous approaches that often depended on conventional detection techniques and basic analytical methods. Regardless of the input type, this technique defines cooperative control for assistance from previous histories. The inputs are cooperatively validated for the instruction responses for human assistance through defined classifications. For this purpose, a neural classifier is used; the maximum possibilities for assistance using self-detected instructions are recommended for the user. The neural classifier is divided into two categories according to its maximum comparable limits: precise instruction and least assessment inputs. For this purpose, the robot system is trained using previous histories and new assistance activities. The learning process performs comparable validations between detected and unrecognizable inputs with a classification that reduces understandability errors. Therefore, the proposed technique was found to reduce response time by 6.81%, improve input detection by 8.73%, and provide assistance by 12.23% under varying inputs.

AB - The role of robotic systems in human assistance is inevitable with the bots that assist with interactive and voice commands. For cooperative and precise assistance, the understandability of these bots needs better input analysis. This article introduces a Comparable Input Assessment Technique (CIAT) to improve the bot system’s understandability. This research introduces a novel approach for HRI that uses optimized algorithms for input detection, analysis, and response generation in conjunction with advanced neural classifiers. This approach employs deep learning models to enhance the accuracy of input identification and processing efficiency, in contrast to previous approaches that often depended on conventional detection techniques and basic analytical methods. Regardless of the input type, this technique defines cooperative control for assistance from previous histories. The inputs are cooperatively validated for the instruction responses for human assistance through defined classifications. For this purpose, a neural classifier is used; the maximum possibilities for assistance using self-detected instructions are recommended for the user. The neural classifier is divided into two categories according to its maximum comparable limits: precise instruction and least assessment inputs. For this purpose, the robot system is trained using previous histories and new assistance activities. The learning process performs comparable validations between detected and unrecognizable inputs with a classification that reduces understandability errors. Therefore, the proposed technique was found to reduce response time by 6.81%, improve input detection by 8.73%, and provide assistance by 12.23% under varying inputs.

KW - interactive classification

KW - machine learning

KW - neural networks

KW - optimal control

KW - robot systems

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85202529598&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/e9643668-58bd-3cbc-8cb3-b26b6ad7c762/

U2 - 10.3390/math12162500

DO - 10.3390/math12162500

M3 - Journal articles

AN - SCOPUS:85202529598

VL - 12

JO - Mathematics

JF - Mathematics

SN - 2227-7390

IS - 16

M1 - 2500

ER -

DOI

Recently viewed

Publications

  1. N-term approximation in anisotropic function spaces
  2. A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data
  3. Framework for the Parallelized Development of Estimation Tasks for Length, Area, Capacity and Volume in Primary School - A Pilot Study
  4. Using protochirons for three-dimensional coding of certain chemical structures.
  5. Fixed-term Contracts and Wages Revisited Using Linked Employer-Employee Data from Germany
  6. Analysis and Implementation of a Resistance Temperature Estimator Based on Bi-Polynomial Least Squares Method and Discrete Kalman Filter
  7. Vision-Based Deep Learning Algorithm for Detecting Potholes
  8. Changing the Administration from within:
  9. More input, better output
  10. DialogueMaps: Supporting interactive transdisciplinary dialogues with a web-based tool for multi-layer knowledge maps
  11. Failure to Learn From Failure Is Mitigated by Loss-Framing and Corrective Feedback
  12. Using sequential injection analysis for fast determination of phosphate in coastal waters
  13. Semantic Answer Type and Relation Prediction Task (SMART 2021)
  14. Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests
  15. Visualization of the Plasma Frequency by means of a Particle Simulation using a Normalized Periodic Model
  16. Bayesian Parameter Estimation in Green Business Process Management
  17. Effects of maize roots on aggregate stability and enzyme activities in soil
  18. A cognitive mapping approach to understanding public objection to energy infrastructure