Personalized Transaction Kernels for Recommendation Using MCTS

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

We study pairwise preference data to model the behavior of users in online recommendation problems. We first propose a tensor kernel to model contextual transactions of a user in a joint feature space. The representation is extended to all users via hash functions that allow to effectively store and retrieve personalized slices of data and context. In order to quickly focus on the relevant properties of the next item to display, we propose the use of Monte-Carlo tree search on the learned preference values. Empirically, on real-world transaction data, both the preference models as well as the search tree exhibit excellent performance over baseline approaches.

OriginalspracheEnglisch
TitelKI 2019 : Advances in Artificial Intelligence - 42nd German Conference on AI, Proceedings
HerausgeberChristoph Benzmüller, Heiner Stuckenschmidt
Anzahl der Seiten15
ErscheinungsortWiesbaden
VerlagSpringer
Erscheinungsdatum01.09.2019
Seiten338-352
ISBN (Print)978-3-030-30178-1
ISBN (elektronisch)978-3-030-30179-8
DOIs
PublikationsstatusErschienen - 01.09.2019
VeranstaltungGerman Conference on Artificial Intelligence, KI 2019 - Kassel, Deutschland
Dauer: 23.09.201926.09.2019
Konferenznummer: 42
https://www.ki2019.de/

DOI