Noninteracting optimal and adaptive torque control using an online parameter estimation with help of polynomials in EKF for a PMSM

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Noninteracting optimal and adaptive torque control using an online parameter estimation with help of polynomials in EKF for a PMSM. / Zwerger, Tanja; Mercorelli, Paolo.
in: ISA Transactions, Jahrgang 158, 01.03.2025, S. 452-467.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{1126ef750603443f954664d252287a74,
title = "Noninteracting optimal and adaptive torque control using an online parameter estimation with help of polynomials in EKF for a PMSM",
abstract = "This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances Ld and Lq of the electrical machine is necessary. These two inductances are estimated by two extended Kalman filters (EKFs), which use a univariate polynomial as a model to describe the saturation effects of the PMSM. The Kalman filters (KF) are realized within a noninteracting control system to improve the observability of the inductance. Despite the non-perfect decoupling, thanks to the structural stochastic nature of the KFs, noninteracting cancellation errors are represented with its process noise and the inductances are estimated sufficiently well. In this sense, we can speak about KFs for and within noninteracting control. Estimating inductances is fundamental for optimal torque control, which is a viable approach to reducing mechanical vibration and disturbance. Moreover, the control strategy of model-based techniques must be adaptively tuned to work properly. Starting from the existing literature, a viable control structure is proposed in which the stability of the control loop using a Proportional Integral (PI) controller is shown for the resulting time-varying system. In fact, the model is represented as a time-varying system because of the presence of the variable inductances Ld and Lq and because of the presence of the velocity of the rotor which is not considered as a state. In this paper, a forward Euler discretization is used to realize the observer in the discrete experimental setup. Measures realized with hardware in the loop (HIL) show interesting results in the context of inductance estimation, due to the advantage of the reduction of the dimensions of the two decoupled EKFs resulting from the noninteraction control. Using the HIL simulator, the proposed torque control strategy is investigated, showing promising results in terms of increasing observability due to decoupling. This and the usage of univariate polynomials in EKF calculations lead to significant reduction of measurement points, reduction of oscillations and ripples, deviation between desired and achieved torque and reduction of disturbances. Moreover, the proposed control strategy using a very limited calculation load, at the same time, maintains the ripples inside the technical limits of the obtained torque. Both effects are due to the decoupled EKFs with simplified and reduced order of the models using univariate polynomials, which require significantly fewer measuring points in the run-up to the creation of the model of the inductances Ld and Lq.",
keywords = "Extended Kalman filter, Noninteracting control, Parameter estimation, Torque control in PMSM, Univariate polynomial, Engineering",
author = "Tanja Zwerger and Paolo Mercorelli",
note = "Publisher Copyright: {\textcopyright} 2025 The Authors",
year = "2025",
month = mar,
day = "1",
doi = "10.1016/j.isatra.2024.12.037",
language = "English",
volume = "158",
pages = "452--467",
journal = "ISA Transactions",
issn = "0019-0578",
publisher = "International Society of Automation",

}

RIS

TY - JOUR

T1 - Noninteracting optimal and adaptive torque control using an online parameter estimation with help of polynomials in EKF for a PMSM

AU - Zwerger, Tanja

AU - Mercorelli, Paolo

N1 - Publisher Copyright: © 2025 The Authors

PY - 2025/3/1

Y1 - 2025/3/1

N2 - This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances Ld and Lq of the electrical machine is necessary. These two inductances are estimated by two extended Kalman filters (EKFs), which use a univariate polynomial as a model to describe the saturation effects of the PMSM. The Kalman filters (KF) are realized within a noninteracting control system to improve the observability of the inductance. Despite the non-perfect decoupling, thanks to the structural stochastic nature of the KFs, noninteracting cancellation errors are represented with its process noise and the inductances are estimated sufficiently well. In this sense, we can speak about KFs for and within noninteracting control. Estimating inductances is fundamental for optimal torque control, which is a viable approach to reducing mechanical vibration and disturbance. Moreover, the control strategy of model-based techniques must be adaptively tuned to work properly. Starting from the existing literature, a viable control structure is proposed in which the stability of the control loop using a Proportional Integral (PI) controller is shown for the resulting time-varying system. In fact, the model is represented as a time-varying system because of the presence of the variable inductances Ld and Lq and because of the presence of the velocity of the rotor which is not considered as a state. In this paper, a forward Euler discretization is used to realize the observer in the discrete experimental setup. Measures realized with hardware in the loop (HIL) show interesting results in the context of inductance estimation, due to the advantage of the reduction of the dimensions of the two decoupled EKFs resulting from the noninteraction control. Using the HIL simulator, the proposed torque control strategy is investigated, showing promising results in terms of increasing observability due to decoupling. This and the usage of univariate polynomials in EKF calculations lead to significant reduction of measurement points, reduction of oscillations and ripples, deviation between desired and achieved torque and reduction of disturbances. Moreover, the proposed control strategy using a very limited calculation load, at the same time, maintains the ripples inside the technical limits of the obtained torque. Both effects are due to the decoupled EKFs with simplified and reduced order of the models using univariate polynomials, which require significantly fewer measuring points in the run-up to the creation of the model of the inductances Ld and Lq.

AB - This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances Ld and Lq of the electrical machine is necessary. These two inductances are estimated by two extended Kalman filters (EKFs), which use a univariate polynomial as a model to describe the saturation effects of the PMSM. The Kalman filters (KF) are realized within a noninteracting control system to improve the observability of the inductance. Despite the non-perfect decoupling, thanks to the structural stochastic nature of the KFs, noninteracting cancellation errors are represented with its process noise and the inductances are estimated sufficiently well. In this sense, we can speak about KFs for and within noninteracting control. Estimating inductances is fundamental for optimal torque control, which is a viable approach to reducing mechanical vibration and disturbance. Moreover, the control strategy of model-based techniques must be adaptively tuned to work properly. Starting from the existing literature, a viable control structure is proposed in which the stability of the control loop using a Proportional Integral (PI) controller is shown for the resulting time-varying system. In fact, the model is represented as a time-varying system because of the presence of the variable inductances Ld and Lq and because of the presence of the velocity of the rotor which is not considered as a state. In this paper, a forward Euler discretization is used to realize the observer in the discrete experimental setup. Measures realized with hardware in the loop (HIL) show interesting results in the context of inductance estimation, due to the advantage of the reduction of the dimensions of the two decoupled EKFs resulting from the noninteraction control. Using the HIL simulator, the proposed torque control strategy is investigated, showing promising results in terms of increasing observability due to decoupling. This and the usage of univariate polynomials in EKF calculations lead to significant reduction of measurement points, reduction of oscillations and ripples, deviation between desired and achieved torque and reduction of disturbances. Moreover, the proposed control strategy using a very limited calculation load, at the same time, maintains the ripples inside the technical limits of the obtained torque. Both effects are due to the decoupled EKFs with simplified and reduced order of the models using univariate polynomials, which require significantly fewer measuring points in the run-up to the creation of the model of the inductances Ld and Lq.

KW - Extended Kalman filter

KW - Noninteracting control

KW - Parameter estimation

KW - Torque control in PMSM

KW - Univariate polynomial

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85214560282&partnerID=8YFLogxK

U2 - 10.1016/j.isatra.2024.12.037

DO - 10.1016/j.isatra.2024.12.037

M3 - Journal articles

C2 - 39799078

AN - SCOPUS:85214560282

VL - 158

SP - 452

EP - 467

JO - ISA Transactions

JF - ISA Transactions

SN - 0019-0578

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Pädagogische Orientierungen des Bildungspersonals in der Beruflichen Integrationsförderung zwischen Personen- und Arbeitsweltorientierung
  2. Despite Good Correlations, There Is No Exact Coincidence between Isometric and Dynamic Strength Measurements in Elite Youth Soccer Players
  3. Internationale Freiwilligeneinsätze: Wirkungen und Win-Win von Gruppenmaßnahmen am Beispiel des Corporate Volunteering mit Habitat for Humanity
  4. Alexandru Grigorescu. 2015. Democratic Intergovernmental Organizations? Normative Pressures and Decision-Making Rules (New York, NY: Cambridge University Press)
  5. Repeated 14CO 2 pulse-labelling reveals an additional net gain of soil carbon during growth of spring wheat under free air carbon dioxide enrichment (FACE)
  6. Invertebrate herbivory rather than competition with tussocks will increasingly delay highland forest regeneration in degraded areas under active restoration
  7. Rechnungslegung im Spannungsfeld zwischen staatlicher Gesetzgebung und privat-rechtlichem Standardsetting: Risiko- und Prognosepublizität im deutschen Konzernlagebericht
  8. "Mein Vordermann heißt Margarine und hinter mir ist eine Orgel." Spiele zur Wiederholung und Festigung des ABC, die eine bessere Orientierung im Wörterbuch ermöglichen
  9. Effects of elevated CO2, elevated O3 and potassium deficiency on Norway spruce [picea abies (L.) Karst.]: seasonal changes in photosynthesis and non-structural carbohydrate content
  10. The Role of Linked Social-Ecological Systems in a Mobile Agent-Based Ecosystem Service from Giant Honey Bees (Apis dorsata) in an Indigenous Community Forest in Palawan, Philippines
  11. Cross-level Information and Influence in Mandated Participatory Planning: Alternative Pathways to Sustainable Water Management in Germany’s Implementation of the EU Water Framework Directive
  12. Mindfulness as self-confirmation? An exploratory intervention study on potentials and limitations of mindfulness-based interventions in the context of environmental and sustainability education
  13. Effects of an online- and video-based learning environment on pre-service teachers’ self-efficacy beliefs, attitudes towards inclusion and knowledge of inclusive education during practical school experiences