Median Based Algorithm as an Entropy Function for Noise Detection in Wavelet Trees for Data Reconciliation

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Median Based Algorithm as an Entropy Function for Noise Detection in Wavelet Trees for Data Reconciliation. / Mercorelli, Paolo.
in: International Journal of Mathematics, Game Theory and Algebra, Jahrgang 19, Nr. 5-6, 2010, S. 319-333.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{6250a9e91e7449b4a75fe5d9abcc490c,
title = "Median Based Algorithm as an Entropy Function for Noise Detection in Wavelet Trees for Data Reconciliation",
abstract = "The noise detection and the data cleaning find application in data compressions for images and voice as well as in their analysis and recognition, data transmission, data reconciliation, fault detection and in general in all application area of the signal processing and measurements. The content of this papercan offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding technique implying a free thresholding one, running in wavelet packets. The author presents a technique which deals with a free thresholding method related to the on-line peaknoise variance estimation even for signals with a small S/N ratio. The second innovative aspect consists of use of wavelet packets which give more elasticity to the technique. The basic idea is to characterize the noise like an incoherent part of the measured signal. It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum. In this sense the proposed median based algorithm can be seen as an entropy function and this analogy is shown. The paper provides to show general properties of the wavelet packets on which the proposed procedure is based. The developed algorithm is totally general even though it is applied by using Haar wavelet packets and it is present in some industrial software platforms to detect sensor outliers because of their easy structure. More, it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit within ABB{\textquoteright}s (Asea Brown Boveri) industry division.",
keywords = "Engineering",
author = "Paolo Mercorelli",
year = "2010",
language = "English",
volume = "19",
pages = "319--333",
journal = "International Journal of Mathematics, Game Theory and Algebra",
issn = "1060-9881",
publisher = "Nova Science Publishers, Inc.",
number = "5-6",

}

RIS

TY - JOUR

T1 - Median Based Algorithm as an Entropy Function for Noise Detection in Wavelet Trees for Data Reconciliation

AU - Mercorelli, Paolo

PY - 2010

Y1 - 2010

N2 - The noise detection and the data cleaning find application in data compressions for images and voice as well as in their analysis and recognition, data transmission, data reconciliation, fault detection and in general in all application area of the signal processing and measurements. The content of this papercan offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding technique implying a free thresholding one, running in wavelet packets. The author presents a technique which deals with a free thresholding method related to the on-line peaknoise variance estimation even for signals with a small S/N ratio. The second innovative aspect consists of use of wavelet packets which give more elasticity to the technique. The basic idea is to characterize the noise like an incoherent part of the measured signal. It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum. In this sense the proposed median based algorithm can be seen as an entropy function and this analogy is shown. The paper provides to show general properties of the wavelet packets on which the proposed procedure is based. The developed algorithm is totally general even though it is applied by using Haar wavelet packets and it is present in some industrial software platforms to detect sensor outliers because of their easy structure. More, it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit within ABB’s (Asea Brown Boveri) industry division.

AB - The noise detection and the data cleaning find application in data compressions for images and voice as well as in their analysis and recognition, data transmission, data reconciliation, fault detection and in general in all application area of the signal processing and measurements. The content of this papercan offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding technique implying a free thresholding one, running in wavelet packets. The author presents a technique which deals with a free thresholding method related to the on-line peaknoise variance estimation even for signals with a small S/N ratio. The second innovative aspect consists of use of wavelet packets which give more elasticity to the technique. The basic idea is to characterize the noise like an incoherent part of the measured signal. It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum. In this sense the proposed median based algorithm can be seen as an entropy function and this analogy is shown. The paper provides to show general properties of the wavelet packets on which the proposed procedure is based. The developed algorithm is totally general even though it is applied by using Haar wavelet packets and it is present in some industrial software platforms to detect sensor outliers because of their easy structure. More, it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit within ABB’s (Asea Brown Boveri) industry division.

KW - Engineering

UR - https://zbmath.org/?q=an%3A1221.94029

M3 - Journal articles

VL - 19

SP - 319

EP - 333

JO - International Journal of Mathematics, Game Theory and Algebra

JF - International Journal of Mathematics, Game Theory and Algebra

SN - 1060-9881

IS - 5-6

ER -

Links

Zuletzt angesehen

Aktivitäten

  1. Probabilistic and discrete computational methods for studying coherent behavior in flows
  2. Modeling Efficient Grounding in Chat-based CSCL: An Approach for Adaptive Scripting?
  3. Computer Simulations in Design. How Social Media meet Computational Methods in Design Processes
  4. Small Input Devices Used by the Elderly – How Sensorimotor Transformation and Task Complexity Affect Interaction
  5. Computer Simulations in Design. How Social Media meet Computational Methods in Design Processes
  6. Probabilistic and discrete methods for the computational study of coherent behavior in flows
  7. Keynote speech entitled: "A Stabilizing Control Strategy for a Bank System using State Space and Sliding Mode Control Approach with an Extended Kalman Filter"
  8. Is there a threshold effect of time headway on subjective variables for different velocities?
  9. Active Performance in Research and Development: The Value of Contextual Fit
  10. A Coding Scheme to Analyse Global Text Processing in Computer Supported Collaborative Learning: What Eye Movements Can Tell Us
  11. Drafts in Action. Concepts and Practices of Artistic Intervention
  12. Perfect anti-windup in output tracking scheme with preaction
  13. Robustness of coherent sets computations
  14. Maximum-Likelihood-Based Panel Cointegration Testing
  15. Presentation of the paper entitled "Soft Optimal Computing to Identify Surface Roughness in Manufacturing using a Gaussian and a Trigonometric Regressor"
  16. Presentation of the paper entitled "Soft Optimal Computing to Identify Surface Roughness in Manufacturing using a Monotonic Regressor"