Homogenization for a non-local coupling model
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
In [P. Deuflhard and R. Hochmuth, On the thermoregulation in the human microvascular system, Proc. Appl. Math. Mech. 3 (2003), pp. 378–379; P. Deuflhard and R. Hochmuth, Multiscale analysis of thermoregulation in the human microsvascular system, Math. Meth. Appl. Sci. 27 (2004), pp. 971–989; R. Hochmuth and P. Deuflhard, Multiscale analysis for the bio-heat transfer equation–the nonisolated case, Math. Models Methods Appl. Sci. 14(11) (2004), pp. 1621–1634], homogenization techniques are applied to derive an anisotropic variant of the bio-heat transfer equation as asymptotic result of boundary value problems providing a microscopic description for microvascular tissue. In view of a future application on treatment planning in hyperthermia, we investigate here the homogenization limit for a coupling model, which takes additionally into account the influence of convective heat transfer in medium-size blood vessels. This leads to second-order elliptic boundary value problems with non-local boundary conditions on parts of the boundary. Moreover, we present asymptotic estimates for first-order correctors.
Originalsprache | Englisch |
---|---|
Zeitschrift | Applicable analysis. An international journal |
Jahrgang | 87 |
Ausgabenummer | 12 |
Seiten (von - bis) | 1311-1323 |
Anzahl der Seiten | 13 |
ISSN | 0003-6811 |
DOIs | |
Publikationsstatus | Erschienen - 12.2008 |
Extern publiziert | Ja |
- Mathematik