Wavelet decompositions of L2-Functionals
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
Based on distribution-theoretical definitions of L 2 and Sobolev spaces given by Werner in [P. Werner (1970). A distribution-theoretical approach to certain Lebesgue and Sobolev spaces. J. Math. Anal. Appl., 29, 19–78.] real interpolation, Besov type spaces and approximation spaces with respect to multiresolution approximations are considered. The key for the investigation are generalized moduli of smoothness introduced by Haf in [H. Haf (1992). On the approximation of functionals in Sobolev spaces by singular integrals. Applicable Analysis, 45, 295–308.]. Those moduli of smoothness allow to connect the concept of L 2-functionals with more recent developments in multiscale analysis, see e.g. [W. Dahmen (1995). Multiscale analysis, approximation, and interpolation spaces. In: C.K. Chui and L.L. Schumaker (Eds.), Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation, pp. 47–88.]. In particular, we derive wavelet characterizations for the Sobolev spaces introduced by Werner and establish stable wavelet decompositions of L 2-functionals. Generalizations to more general spaces of functionals and applications are also mentioned.
Originalsprache | Englisch |
---|---|
Zeitschrift | Applicable analysis. An international journal |
Jahrgang | 83 |
Ausgabenummer | 12 |
Seiten (von - bis) | 1187-1209 |
Anzahl der Seiten | 23 |
ISSN | 0003-6811 |
DOIs | |
Publikationsstatus | Erschienen - 01.12.2004 |
Extern publiziert | Ja |
- Mathematik