Finding the Best Match — a Case Study on the (Text‑) Feature and Model Choice in Digital Mental Health Interventions

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Finding the Best Match — a Case Study on the (Text‑) Feature and Model Choice in Digital Mental Health Interventions. / Zantvoort, Kirsten; Scharfenberger, Jonas; Boß, Leif et al.
in: Journal of Healthcare Informatics Research, Jahrgang 7, Nr. 4, 00148, 12.2023, S. 447-479.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{c90d7531bb5b4c94911b929e62aade9b,
title = "Finding the Best Match — a Case Study on the (Text‑) Feature and Model Choice in Digital Mental Health Interventions",
abstract = "With the need for psychological help long exceeding the supply, finding ways ofscaling, and better allocating mental health support is a necessity. This paper contributes by investigating how to best predict intervention dropout and failure to allow for a need-based adaptation of treatment. We systematically compare the predictive power of different text representation methods (metadata, TF-IDF, sentiment and topic analysis, and word embeddings) in combination with supplementary numerical inputs (socio-demographic, evaluation, and closed-question data). Additionally, we address the research gap of which ML model types — ranging from linear to sophisticated deep learning models — are best suited for different features and outcome variables. To this end, we analyze nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. Our research proves that — contrary to previous findings — there is great promise in using neural network approaches on DMHI text data. We propose a task-specific LSTM-based model architecture to tackle the challenge of long input sequences and thereby demonstrate the potential of word embeddings (AUC scores of up to 0.7) forpredictions in DMHIs. Despite the relatively small data set, sequential deep learning models, on average, outperform simpler features such as metadata and bag-of-words approaches when predicting dropout. The conclusion is that user-generated text of the first two sessions carries predictive power regarding patients{\textquoteright} dropout and intervention failure risk. Furthermore, the match between the sophistication of features and models needs to be closely considered to optimize results, and additional nontext features increase prediction results.",
keywords = "E-mental health, Health care analytics, Machine learning, Natural language processing, Precision psychiatry",
author = "Kirsten Zantvoort and Jonas Scharfenberger and Leif Bo{\ss} and Dirk Lehr and Burkhardt Funk",
note = "Funding Information: Open Access funding enabled and organized by Projekt DEAL. The present study has been funded by Leuphana University. The original RCTs were funded by the European Union (project EFRE: CCI 2007DE161PR001). Publisher Copyright: {\textcopyright} 2023, The Author(s).",
year = "2023",
month = dec,
doi = "10.1007/s41666-023-00148-z",
language = "English",
volume = "7",
pages = "447--479",
journal = "Journal of Healthcare Informatics Research",
issn = "2509-498X",
publisher = "Springer International Publishing AG",
number = "4",

}

RIS

TY - JOUR

T1 - Finding the Best Match — a Case Study on the (Text‑) Feature and Model Choice in Digital Mental Health Interventions

AU - Zantvoort, Kirsten

AU - Scharfenberger, Jonas

AU - Boß, Leif

AU - Lehr, Dirk

AU - Funk, Burkhardt

N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL. The present study has been funded by Leuphana University. The original RCTs were funded by the European Union (project EFRE: CCI 2007DE161PR001). Publisher Copyright: © 2023, The Author(s).

PY - 2023/12

Y1 - 2023/12

N2 - With the need for psychological help long exceeding the supply, finding ways ofscaling, and better allocating mental health support is a necessity. This paper contributes by investigating how to best predict intervention dropout and failure to allow for a need-based adaptation of treatment. We systematically compare the predictive power of different text representation methods (metadata, TF-IDF, sentiment and topic analysis, and word embeddings) in combination with supplementary numerical inputs (socio-demographic, evaluation, and closed-question data). Additionally, we address the research gap of which ML model types — ranging from linear to sophisticated deep learning models — are best suited for different features and outcome variables. To this end, we analyze nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. Our research proves that — contrary to previous findings — there is great promise in using neural network approaches on DMHI text data. We propose a task-specific LSTM-based model architecture to tackle the challenge of long input sequences and thereby demonstrate the potential of word embeddings (AUC scores of up to 0.7) forpredictions in DMHIs. Despite the relatively small data set, sequential deep learning models, on average, outperform simpler features such as metadata and bag-of-words approaches when predicting dropout. The conclusion is that user-generated text of the first two sessions carries predictive power regarding patients’ dropout and intervention failure risk. Furthermore, the match between the sophistication of features and models needs to be closely considered to optimize results, and additional nontext features increase prediction results.

AB - With the need for psychological help long exceeding the supply, finding ways ofscaling, and better allocating mental health support is a necessity. This paper contributes by investigating how to best predict intervention dropout and failure to allow for a need-based adaptation of treatment. We systematically compare the predictive power of different text representation methods (metadata, TF-IDF, sentiment and topic analysis, and word embeddings) in combination with supplementary numerical inputs (socio-demographic, evaluation, and closed-question data). Additionally, we address the research gap of which ML model types — ranging from linear to sophisticated deep learning models — are best suited for different features and outcome variables. To this end, we analyze nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. Our research proves that — contrary to previous findings — there is great promise in using neural network approaches on DMHI text data. We propose a task-specific LSTM-based model architecture to tackle the challenge of long input sequences and thereby demonstrate the potential of word embeddings (AUC scores of up to 0.7) forpredictions in DMHIs. Despite the relatively small data set, sequential deep learning models, on average, outperform simpler features such as metadata and bag-of-words approaches when predicting dropout. The conclusion is that user-generated text of the first two sessions carries predictive power regarding patients’ dropout and intervention failure risk. Furthermore, the match between the sophistication of features and models needs to be closely considered to optimize results, and additional nontext features increase prediction results.

KW - E-mental health

KW - Health care analytics

KW - Machine learning

KW - Natural language processing

KW - Precision psychiatry

UR - http://www.scopus.com/inward/record.url?scp=85171458668&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/c1ccce9b-85a7-3e08-9249-6abbcf3b5023/

U2 - 10.1007/s41666-023-00148-z

DO - 10.1007/s41666-023-00148-z

M3 - Journal articles

C2 - 37927375

VL - 7

SP - 447

EP - 479

JO - Journal of Healthcare Informatics Research

JF - Journal of Healthcare Informatics Research

SN - 2509-498X

IS - 4

M1 - 00148

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. Crazy, Classified City Life - Hackfeminist Future-Making Practices between Dystopia and Utopia, Predictability and Possibility
  2. Bayerische Akademie der Wissenschaften: Strategische Prozessführung. Dienst an der Gesellschaft oder Missbrauch der Gerichte?
  3. Jahrestagung der Sektion Frauen- und Geschlechterforschung der Deutschen Gesellschaft für Erziehungswissenschaft - DGfE 2013
  4. Vorstellung des Projektes "Studienpfad für den Beruf des kommunalen Klimamanagements" im Fachausschuss Klimaneutralität 2030
  5. Measuring the Impacts of NGO partnerships The Economic and Societal Benefits of Community Involvement at Merck Ltd., Thailand
  6. VISU: Vagueness, Incompleteness, Subjectivity, and Uncertainty in Provenance Language Processing and Linked Open Data Modelling
  7. Daily experienced workplace incivility and negative affect among migrant and nonmigrant blue-collar temporary agency workers.
  8. Verhaltensuntersuchungen zum Ablenkungsgrad von Werbesäulen unter dem Aspekt der abstrakten Gefährdung des Straßenverkehrs
  9. Alterations of a visual and how they work for and at the boundaries of an interorganizational team: A multimodal exploration
  10. Panel session on “Strategy Communications: Talk and Text” with Andreas König, Eero Vaara, Freek Vermeulen, and Basak Yakis-Douglas
  11. Plenary Speaker at the 2021 4th IEEE International Conference on Information Communication and Signal Processing (ICICSP 2021)
  12. Matching the Core Text Approach with the General Education Philosophy: Breaking Ground at Leuphana College in Lüneburg, Germany
  13. 11. Sitzung des wissenschaftlichen Beraterkreises der Forschungsdatenzentren der Statistischen Ämter des Bundes und der Länder
  14. Conference presentation: Integrated Reporting: Current state of empirical research, limitations and future research implications
  15. Assessing the Boundary-Crossing Collaboration in Research-Practice Partnerships in Initial Teacher Education: Empirical Insights
  16. Zeitverhältnisse und Zeitpraktiken im Ganztag. Vortrag und Fachdiskussion mit Einrichtungsleitungen von "Der Paritätische Hessen"
  17. Evaluation of a project submitted for financial support to FCT – 2022 CALL FOR R&D PROJECT GRANTS, Portugal: Frederic Dufaux (Chair)
  18. Evaluation of a project submitted for financial support to Humbold Foundation. Coordinator in Humbold Foundation: Koegel Annette
  19. Tagung "Metaphysische Spannung / Gestörter Suspense. Adalbert Stifter, Theodor Storm, Conrad Ferdinand Meyer und das 19. Jahrhundert"

Publikationen

  1. Governancestrukturen in der Grenz- und Asylpolitik: starke europäische Agenturen, schwache mitgliedstaatliche Souveränität
  2. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity
  3. Plant resource-use characteristics as predictors for species contribution to community biomass in experimental grasslands
  4. Stakeholder Governance – An analysis of BITC Corporate Responsibility Index Data on Stakeholder Engagement and Governance
  5. Entwicklungsteams im ZZL-Netzwerk – Ein institutionen- und phasenübergreifendes Kooperationsformat in der Lehrkräftebildung
  6. KomPädenZ-ein Projekt zur Anrechnung erworbenen Wissens unter besonderer Berücksichtigung des Gender-Mainstreaming-Prinzips
  7. Helfen Bürgerbeteiligungen bei der Finanzierung von Erneuerbare-Energien-Vorhaben kommunaler Energieversorgungsunternehmen?
  8. W-RENA: Eine web-basierte Rehabilitationsnachsorge zur Transferförderung nach stationärer psychosomatischer Rehabilitation
  9. The influence of native versus exotic streetscape vegetation on the spatial distribution of birds in suburbs and reserves
  10. How do individual farmers’ objectives influence the evaluation of rangeland management strategies under a variable climate?
  11. Efficacy of an internet-based self-help intervention to reduce co-occurring alcohol misuse and depression symptoms in adults
  12. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change
  13. Das internationale Seminar "Bildung für eine nachhaltige Entwicklung und Biodiversität" in Ecuador - ein Ort Globalen Lernens?
  14. Provenance- and life-history stage-specific responses of the dwarf shrub Calluna vulgaris to elevated vapour pressure deficit
  15. Ernährungsverhalten sozial benachteiligter Jugendlicher - ein Interventionsprojekt in Einrichtungen der offenen Jugendhilfe
  16. Mechanical characterization of as-cast AA7075/6060 and CuSn6/Cu99.5 compounds using an experimental and numerical push-out test
  17. Psychometric properties of a COVID-19 health literacy scale in a sample of German school principals applying Rasch analysis
  18. „Dann ist man wieder die mit dem Migrationshintergrund“: Subjektivationen von Eltern im Kontext neoliberaler Bildungsreformen
  19. Drittarbeitslohn aus Sonderrechtsbeziehungen zwischen Arbeitnehmern und Dritten im Steuerrecht und Sozialversicherungsrecht
  20. Zur Relevanz von Bestandseffekten und der Fundamentalen Transformation in wiederholten Biodiversitätsschutz-Aussschreibungen
  21. Handbuch interkulturelle Kommunikation und Kooperation, Bd. 1, Grundlagen und Praxisfelder, mit 14 Tabellen, Alexander Thomas ... (Hg.)
  22. Nachhaltigkeit in Bildungsinstitutionen in Schleswig-Holstein. Entwicklung eines Bildungskonzeptes für ausgewählte Zielgruppen
  23. Parameters identification in a permanent magnet three-phase synchronous motor of a city-bus for an intelligent drive assistant
  24. Entrepreneurial Traits, Entrepreneurial Orientation, and Innovation in the Performance of Owner-Manager Led Firms: A Meta-analysis