Finding the Best Match — a Case Study on the (Text‑) Feature and Model Choice in Digital Mental Health Interventions

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Authors

With the need for psychological help long exceeding the supply, finding ways of
scaling, and better allocating mental health support is a necessity. This paper contributes by investigating how to best predict intervention dropout and failure to allow for a need-based adaptation of treatment. We systematically compare the predictive power of different text representation methods (metadata, TF-IDF, sentiment and topic analysis, and word embeddings) in combination with supplementary numerical inputs (socio-demographic, evaluation, and closed-question data). Additionally, we address the research gap of which ML model types — ranging from linear to sophisticated deep learning models — are best suited for different features and outcome variables. To this end, we analyze nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. Our research proves that — contrary to previous findings — there is great promise in using neural network approaches on DMHI text data. We propose a task-specific LSTM-based model architecture to tackle the challenge of long input sequences and thereby demonstrate the potential of word embeddings (AUC scores of up to 0.7) for
predictions in DMHIs. Despite the relatively small data set, sequential deep learning models, on average, outperform simpler features such as metadata and bag-of-words approaches when predicting dropout. The conclusion is that user-generated text of the first two sessions carries predictive power regarding patients’ dropout and intervention failure risk. Furthermore, the match between the sophistication of features and models needs to be closely considered to optimize results, and additional nontext features increase prediction results.
OriginalspracheEnglisch
Aufsatznummer00148
ZeitschriftJournal of Healthcare Informatics Research
Jahrgang7
Ausgabenummer4
Seiten (von - bis)447-479
Anzahl der Seiten33
DOIs
PublikationsstatusErschienen - 12.2023

Bibliographische Notiz

Publisher Copyright:
© 2023, The Author(s).

DOI

Zuletzt angesehen

Aktivitäten

  1. Tagung "Mathe für alle" 2012
  2. AMMODI Virtual Roundtable: "Making African(ist) Migration Research Visible"
  3. Peter Lang (Verlag)
  4. A Tale of Two Swords or a Coherent Policy Approach? - Foreign Investment Screening and Merger Review
  5. Karls-Universität
  6. Kinetic Investigation of Ideal Multipole Resonance Probe
  7. Criteria and Strategies of Student Teachers to Deal with Teaching Material from the Internet about Refugees
  8. Begriffsdefinitionen in der Interkulturellen Arbeit
  9. Research Priorities in Light of the Future Global Action Programme on Education for Sustainable Development
  10. The Process of Dividuation and the Nebula of Anonymity
  11. Intercultural Relations in Practice 2017
  12. Effects of an international student exchange program on knowledge of international health care systems based on a real patient ́s case
  13. 18th International Conference on Pragmatics and Language Learning - 2010 (Veranstaltung)
  14. Quantencomputer. Taktlos. „Kulturtechniken der Synchronisation” - 2007
  15. The Practice of Decolonization
  16. Environmental Management Accounting Support for Rice Husk Processing Alternatives
  17. 13th CIRP Conference on INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING - CIRP ICME ’19
  18. College (Organisation)
  19. Processes of Sustainability Transformation. An inter- and transdisciplinary project
  20. Johannes Kepler Universität Linz
  21. International Symposium on Learning Materials and Instruction - 2019
  22. Multi-stakeholder working group on Peasant Reserve Zones
  23. BiSS Netzwerktreffen Evaluationsprojekte
  24. Re-thinking Relationality in the Sociotechnological Condition