Finding the Best Match — a Case Study on the (Text‑) Feature and Model Choice in Digital Mental Health Interventions

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet


With the need for psychological help long exceeding the supply, finding ways of
scaling, and better allocating mental health support is a necessity. This paper contributes by investigating how to best predict intervention dropout and failure to allow for a need-based adaptation of treatment. We systematically compare the predictive power of different text representation methods (metadata, TF-IDF, sentiment and topic analysis, and word embeddings) in combination with supplementary numerical inputs (socio-demographic, evaluation, and closed-question data). Additionally, we address the research gap of which ML model types — ranging from linear to sophisticated deep learning models — are best suited for different features and outcome variables. To this end, we analyze nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. Our research proves that — contrary to previous findings — there is great promise in using neural network approaches on DMHI text data. We propose a task-specific LSTM-based model architecture to tackle the challenge of long input sequences and thereby demonstrate the potential of word embeddings (AUC scores of up to 0.7) for
predictions in DMHIs. Despite the relatively small data set, sequential deep learning models, on average, outperform simpler features such as metadata and bag-of-words approaches when predicting dropout. The conclusion is that user-generated text of the first two sessions carries predictive power regarding patients’ dropout and intervention failure risk. Furthermore, the match between the sophistication of features and models needs to be closely considered to optimize results, and additional nontext features increase prediction results.
ZeitschriftJournal of Healthcare Informatics Research
Seiten (von - bis)447-479
Anzahl der Seiten33
PublikationsstatusErschienen - 12.2023

Bibliographische Notiz

Publisher Copyright:
© 2023, The Author(s).