A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study. / Holtmann, Jana; Koch, Tobias; Lochner, Katharina et al.
in: Multivariate Behavioral Research, Jahrgang 51, Nr. 5, 02.09.2016, S. 661-680.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{838197da39304d64861dc158dc6296c0,
title = "A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study",
abstract = "Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.",
keywords = "Social Work and Social Pedagogics, multilevel structural equation modeling, multilevel item response theory, Bayesian statistics, sample size, Monte Carlo simulation",
author = "Jana Holtmann and Tobias Koch and Katharina Lochner and Michael Eid",
year = "2016",
month = sep,
day = "2",
doi = "10.1080/00273171.2016.1208074",
language = "English",
volume = "51",
pages = "661--680",
journal = "Multivariate Behavioral Research",
issn = "0027-3171",
publisher = "Psychology Press Ltd",
number = "5",

}

RIS

TY - JOUR

T1 - A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study

AU - Holtmann, Jana

AU - Koch, Tobias

AU - Lochner, Katharina

AU - Eid, Michael

PY - 2016/9/2

Y1 - 2016/9/2

N2 - Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.

AB - Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.

KW - Social Work and Social Pedagogics

KW - multilevel structural equation modeling

KW - multilevel item response theory

KW - Bayesian statistics

KW - sample size

KW - Monte Carlo simulation

UR - http://www.scopus.com/inward/record.url?scp=84984906875&partnerID=8YFLogxK

U2 - 10.1080/00273171.2016.1208074

DO - 10.1080/00273171.2016.1208074

M3 - Journal articles

C2 - 27594086

VL - 51

SP - 661

EP - 680

JO - Multivariate Behavioral Research

JF - Multivariate Behavioral Research

SN - 0027-3171

IS - 5

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. Between Inclusion and Competitive Orientation: Educational Practices and Perceptions of NGOs in the Context of the EU-Turkey Agreement.
  2. Projektabschlusspräsentation
  3. Empirical Research Methods on Legitimacy: Repertory Grid as the Interface between „Measuring“ and „Evaluating“
  4. Workshop mit David Bates: "Compossible Worlds"
  5. Unboxing Uncertainties – Interrogating Forecasting and Foreclosing Future Infrastructures in the Amazon Town
  6. 2nd Organizing Creativity Transalpine Paper Development Workshop
  7. On the Difficulties and Promises of Accessing and Mobilizing Information around Deportation-related Identification
  8. Intersecting Practices and Experiences of Educational Exclusions in Germany and Turkey – Implications for Transnational Professionalisation Processes
  9. Using the Method of Limits to Assess Comfortable Time Headways in Adaptive Cruise Control
  10. Unraveling the Complexity of U.S. Presidential Approval
  11. International Conference of EAS and ISME - 2007
  12. Crazy, Classified City Life - Hackfeminist Future-Making Practices between Dystopia and Utopia, Predictability and Possibility
  13. Requests in Nigerian and British English conversational interactions: A corpus-based approach.
  14. GDCP Jahrestagung 2020
  15. Guest Lecture: Freedom Rising: Human Empowerment and the Quest for Emancipation
  16. Self-directed career management, presence of calling, and core self-evaluations: Test of a mediation model
  17. 131st MLA Annual Convention 2016
  18. 25th International Conference on System Theory, Control and Computing