A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study. / Holtmann, Jana; Koch, Tobias; Lochner, Katharina et al.
In: Multivariate Behavioral Research, Vol. 51, No. 5, 02.09.2016, p. 661-680.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{838197da39304d64861dc158dc6296c0,
title = "A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study",
abstract = "Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.",
keywords = "Social Work and Social Pedagogics, multilevel structural equation modeling, multilevel item response theory, Bayesian statistics, sample size, Monte Carlo simulation",
author = "Jana Holtmann and Tobias Koch and Katharina Lochner and Michael Eid",
year = "2016",
month = sep,
day = "2",
doi = "10.1080/00273171.2016.1208074",
language = "English",
volume = "51",
pages = "661--680",
journal = "Multivariate Behavioral Research",
issn = "0027-3171",
publisher = "Routledge Taylor & Francis Group",
number = "5",

}

RIS

TY - JOUR

T1 - A comparison of ML, WLSMV and Bayesian methods for multilevel structural equation models in small samples: A simulation study

AU - Holtmann, Jana

AU - Koch, Tobias

AU - Lochner, Katharina

AU - Eid, Michael

PY - 2016/9/2

Y1 - 2016/9/2

N2 - Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.

AB - Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.

KW - Social Work and Social Pedagogics

KW - multilevel structural equation modeling

KW - multilevel item response theory

KW - Bayesian statistics

KW - sample size

KW - Monte Carlo simulation

UR - http://www.scopus.com/inward/record.url?scp=84984906875&partnerID=8YFLogxK

U2 - 10.1080/00273171.2016.1208074

DO - 10.1080/00273171.2016.1208074

M3 - Journal articles

C2 - 27594086

VL - 51

SP - 661

EP - 680

JO - Multivariate Behavioral Research

JF - Multivariate Behavioral Research

SN - 0027-3171

IS - 5

ER -

Recently viewed

Publications

  1. Restoring Causal Analysis to Structural Equation ModelingReview of Causality: Models, Reasoning, and Inference (2nd Edition), by Judea Pearl
  2. Using Heider’s Epistemology of Thing and Medium for Unpacking the Conception of Documents: Gantt Charts and Boundary Objects
  3. Noninteracting optimal and adaptive torque control using an online parameter estimation with help of polynomials in EKF for a PMSM
  4. Towards a Service-Oriented Architecture for Production Planning and Control
  5. A direct test of the similarity assumption — Focusing on differences as compared with similarities decreases automatic imitation
  6. Influence of Long-Lasting Static Stretching Intervention on Functional and Morphological Parameters in the Plantar Flexors
  7. Mechanical characterization of as-cast AA7075/6060 and CuSn6/Cu99.5 compounds using an experimental and numerical push-out test
  8. Modelling, explaining, enacting and getting feedback: How can the acquisition of core practices in teacher education be optimally fostered?
  9. Teaching Sustainable Development in a Sensory and Artful Way — Concepts, Methods, and Examples
  10. Timing matters: Distinct effects of nitrogen and phosphorus fertilizer application timing on root system architecture responses
  11. Online-scheduling using past and real-time data
  12. CHANGING RECREATIONAL ACTIVITIES FOR REDUCING INSOMNIA SEVERITY? RESULTS FROM A SERIAL MEDIATION ANALYSIS ON THE IMPACT OF RECREATIONAL BEHAVIOR AS A MECHANISM OF CHANGE IN DIGITAL INTERVENTIONS FOR INSOMNIA
  13. Biodegradability and genotoxicity of surface functionalized colloidal silica (SiO2) particles in the aquatic environment
  14. Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses
  15. Influence of Mg content in Al alloys on processing characteristics and dynamically recrystallized microstructure of friction surfacing deposits