Towards a Camera-Based Road Damage Assessment and Detection for Autonomous Vehicles: Applying Scaled-YOLO and CVAE-WGAN
Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
Authors
Initiatives such as the 2020 IEEE Global Road Damage Detection Challenge prompted extensive research in camera-based road damage detection with Deep Learning, primarily focused on improving the efficiency of road management. However, road damage detection is also relevant for automated driving to optimize passenger comfort and safety. We use the state-of-the-art object detection framework Scaled-YOLOv4 and develop two small-sized models that cope with the limited computational resources in the vehicle. With average F1 scores of 0.54 and 0.586, respectively, the models keep pace with the state-of-the-art solutions of the challenge. Since the data consists only of smartphone images, we also train expert models for autonomous driving utilizing vehicle camera data. In addition to detection, severity assessment is critical. We propose a semi-supervised learning approach based on the encodings learned by combining a class-conditional Variational Autoencoder and a Wasserstein Generative Adversarial Network to classify detected damage into different severity levels.
Original language | English |
---|---|
Title of host publication | 2021 IEEE 94th Vehicular Technology Conference, VTC 2021-Fall - Proceedings : Proceedings, Virtual Conference, 27 - 30 September 2021 |
Number of pages | 7 |
Place of Publication | Piscataway |
Publisher | IEEE - Institute of Electrical and Electronics Engineers Inc. |
Publication date | 01.09.2021 |
ISBN (print) | 978-1-6654-1369-5 |
ISBN (electronic) | 978-1-6654-1368-8 |
DOIs | |
Publication status | Published - 01.09.2021 |
Event | 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) - Virtuell, Norman, United States Duration: 27.09.2021 → 28.09.2021 Conference number: 94 https://events.vtsociety.org/vtc2021-fall/ |
Bibliographical note
Publisher Copyright:
© 2021 IEEE.
- Business informatics - road damage, deep learning, Computer vision, autonomous driving, scaled-YOLOv4, VAE, Wasserstein GAN