Properties of some overlapping self-similar and some self-affine measures
Research output: Journal contributions › Journal articles › Research › peer-review
Authors
We generalize theorems of Peres and Solomyak about the abso- lute continuity resp. singularity of Bernoulli convolutions ([19], [16], [17]) to a broader class of self-similar measures on the real line. Using the dimension the- ory of ergodic measures (see [11] and [2]) we find a formula for the dimension of certain self-affine measures in terms of the dimension of the above mentioned self- similar measures. Combining these results we show the identity of Hausdorff and box-counting dimension of a special class of self-affine sets.
| Original language | English | 
|---|---|
| Journal | Acta Mathematica Hungarica | 
| Volume | 92 | 
| Issue number | 1-2 | 
| Pages (from-to) | 143-161 | 
| Number of pages | 19 | 
| ISSN | 0236-5294 | 
| DOIs | |
| Publication status | Published - 07.2001 | 
- Mathematics(all)
 
ASJC Scopus Subject Areas
- Mathematics
 - self-similar, self-affine, Hausdorff dimension, box-counting dimension
 
