Microstructural and mechanical aspects of reinforcement welds for lightweight components produced by friction hydro pillar processing

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Authors

  • Gustavo Pinheiro
  • Jorge Dos Santos
  • Norbert Hort
  • Karl Ulrich Kainer

The development of new creep resistant and cost effective die casting magnesium alloys such as AE, MRI, MEZ, ACM, AXJ, AJ, WE have emerged as an alternative to fulfil the actual demands in structural relevant applications as engines blocks, gear and converter boxes. However, magnesium components are in most of the cases screwed with aluminium and steel bolts, which lead the screwed joint to lose the preload force due to relaxation. This barrier limits thus the broad use of magnesium within this segment and should somehow find an adequate solution to be implemented and to help overcoming this limitation. In this context Friction Welding (FW) and particularly Friction Hydro Pillar Processing (FHPP), which can be described as a drill and fill process, appears as an alternative to widespread the use of magnesium. In this context, FHPP is intended to be used to locally reinforce mechanical fastened magnesium components. In the present work a preliminary experimental matrix was defined and used to determine optimal welding conditions. Furthermore elaborate experimental techniques have been used to describe the process parameters-microstructure-properties relation ships and the consequent mechanisms leading to bonding in FHPP welds in dissimilar configurations. The welds have been performed using a hydraulic powered friction welding machine, originally designed and built as a portable stud welding unit, delivering up to 40 kN welding force and 8000 rpm. All welds were monitored, analysed and evaluated using a purpose built data recording system. AZ91 and AXJ magnesium cast ingots have been used in the experimental programme. The results obtained in the course of this study have shown the feasibility of FHPP to produce high strength welds with mechanical properties comparable to those from base material. Defects, like porosity or lack of bonding, were not observed. It could be demonstrated that for dissimilar AXJ to AZ91D welds the consumable member is fully plasticized across the bore of the hole and through the thickness of the workpiece. Mechanical properties of the welded joints have shown values similar to those from AZ91 base material. An increased upsetting indicates no clear variation of tensile strength, with values, in both cases, significantly superior to those from AXJ base material due to the formation of a completely different microstructure in the extruded zone after welding. Hardness values achieve in some points values up to 80HV, which means that in the extruded AXJ material an overmatching condition was created.

Original languageEnglish
Title of host publicationMagnesium Technology 2009 : Proceedings of a Symposium Sponsored by the Magnesium Committee of the Light Metals Division of the Minerals, Metals
EditorsEric A. Nyberg, Sean R. Agnew, Neale R. Neelameggham, Mihriban O. Pekguleryuz
Number of pages6
PublisherThe Minerals, Metals & Materials Society
Publication date2009
Pages191-196
ISBN (print)9780873397308, 0873397304
Publication statusPublished - 2009
Externally publishedYes
EventMagnesium Technology 2009 - San Francisco, CA, United States
Duration: 15.02.200919.02.2009

    Research areas

  • Friction welding, High temperature, Magnesium, Microstructure
  • Engineering

Recently viewed

Publications

  1. Communicating CCS
  2. Second-Order Sliding Mode Control with State and Disturbance Estimation for a Permanent Magnet Linear Motor
  3. Towards Computer Simulations of Virtue Ethics
  4. A cascade regulator using Lyapunov's PID-PID controllers for an aggregate actuator in automotive applications
  5. Effectiveness of self-generation during learning is dependent on individual differences in need for cognition
  6. Accuracy Improvement of Vision System for Mobile Robot Navigation by Finding the Energetic Center of Laser Signal
  7. Mechanical properties and microstructures of nano SiC reinforced ZE10 composites prepared with ultrasonic vibration
  8. Playing in the Spaces: Anarchism in the Classroom
  9. Combining SMC and MTPA Using an EKF to estimate parameters and states of an interior PMSM
  10. Comparison of Backpropagation and Kalman Filter-based Training for Neural Networks
  11. Linked Accomplishment Of Order Management And Production Planning And Control. An Integrated Model-based Approach
  12. Modellieren in der Sekundarstufe
  13. Evidence for singlet state β cleavage in the photoreaction of α-(2,6-dimethoxyphenoxy)-acetophenone inferred from time-resolved CIDNP spectroscopy
  14. Methods in Writing Process Research
  15. Chip extrusion with integrated equal channel angular pressing
  16. Development of Early Spatial Perspective-Taking - Toward a Three-Level Model
  17. Horizontal, but not vertical canopy structure is related to stand functional diversity in a subtropical slope forest
  18. Landscape modification and habitat fragmentation: a synthesis
  19. Belief in free will affects causal attributions when judging others’ behavior
  20. A switching observer for sensorless control of an electromagnetic valve actuator for camless internal combustion engines
  21. Energy-aware system design for autonomous wireless sensor nodes
  22. Accuracy Improvement by Artificial Neural Networks in Technical Vision System
  23. Model-based Analysis of Reassembly Processes within the Regeneration of Complex Capital Goods
  24. Test of advanced hyperfine structure theory by precision radio-frequency and laser spectroscopy in molybdenum
  25. Strategy maps
  26. Microstructure refinement by a novel friction-based processing on Mg-Zn-Ca alloy
  27. Modality of task presentation and mathematical abilitiy in a study about spatial ability