Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning

Research output: Journal contributionsConference article in journalResearchpeer-review

Authors

Solid-state joining techniques have become increasingly attractive for joining similar and dissimilar materials because it enables further optimization of lightweight components. In contrast to fusion-based joining processes, solid-state joining prevents the occurrence of typical defects such as pores or hot cracking. Machine learning algorithms are powerful tools to identify and quantify relationships between essential features along the process-property chain. In particular, different supervised machine learning algorithms can be used to perform regression analyses and establish correlations between process parameters as well as resulting properties. This can help to circumvent the demand for conducting a vast number of additional experiments to determine optimized process parameters for desired material properties. Additionally, this knowledge can be utilized to obtain a deeper understanding of the underlying mechanisms. In this study, a number of regression algorithms, such as support vector machines, decision trees, random forest and 2nd-order polynomial regression have been applied to correlate process parameters and materials properties for the solid-state joining process of force-controlled friction riveting. Experimental data generated via a central-composite Design of Experiments, serves as source of two separate data sets: one for training and one for testing the machine learning algorithms. The performances of the different algorithms are evaluated based on the determination coefficient R2 and the standard deviation of the predictions on the test data set. The trained algorithms with the best performance measures can be used as predictive models to forecast specific influences of process parameters on mechanical properties. Through the application of these models, optimized process parameters can be determined that lead to desired properties.

Original languageEnglish
JournalProcedia Manufacturing
Volume47
Pages (from-to)615-622
Number of pages8
DOIs
Publication statusPublished - 05.2020
Event23rd International Conference on Material Forming - 2020 - online, Cottbus, Germany
Duration: 04.05.202008.05.2020
Conference number: 23
https://esaform2020.org/

Bibliographical note

The authors acknowledge funding from the Helmholtz-Association via an ERC-Recognition-Award (ERC-RA-0022).

    Research areas

  • Engineering - Decision trees, Process parameters, Random forests, Solid state joining, Support vector machines, Ultimate tesnile force

Documents

DOI

Recently viewed

Publications

  1. GPU-accelerated meshfree computational framework for modeling the friction surfacing process
  2. Q-Adaptive Control of the nonlinear dynamics of the cantilever-sample system of an Atomic Force Microscope
  3. A PHENOMENOGRAPHICAL STUDY OF CHILDRENS’ SPATIAL THOUGHT WHILE USING MAPS IN REAL SPACES
  4. PLM ‑supported automated process planning and partitioning for collaborative assembly processes based on a capability analysis
  5. Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current
  6. Introducing a multivariate model for predicting driving performance
  7. The effects of different on-line adaptive response time limits on speed and amount of learning in computer assisted instruction and intelligent tutoring
  8. A New Framework for Production Planning and Control to Support the Positioning in Fields of Tension Created by Opposing Logistic Objectives
  9. Grazing, exploring and networking for sustainability-oriented innovations in learning-action networks
  10. Using Local and Global Self-Evaluations to Predict Students' Problem Solving Behaviour
  11. Using Complexity Metrics to Assess Silent Reading Fluency
  12. Mathematical relation between extended connectivity and eigenvector coefficients.
  13. NH4+ ad-/desorption in sequencing batch reactors
  14. Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
  15. Lyapunov stability analysis to set up a PI controller for a mass flow system in case of a non-saturating input
  16. Springback prediction and reduction in deep drawing under influence of unloading modulus degradation
  17. Should learners use their hands for learning? Results from an eye-tracking study
  18. Different kinds of interactive exercises with response analysis on the web
  19. »HOW TO MAKE YOUR OWN SAMPLES«
  20. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests
  21. Visualization of the Plasma Frequency by means of a Particle Simulation using a Normalized Periodic Model
  22. Exact and approximate inference for annotating graphs with structural SVMs
  23. Closed-form Solution for the Direct Kinematics Problem of the Planar 3-RPR Parallel Mechanism