Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection. / Sepulveda-Valdez, Cesar; Sergiyenko, Oleg; Tyrsa, Vera et al.
In: Mathematics, Vol. 12, No. 13, 1940, 07.2024.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

Sepulveda-Valdez, C, Sergiyenko, O, Tyrsa, V, Mercorelli, P, Rodríguez-Quiñonez, JC, Flores-Fuentes, W, Zhirabok, A, Alaniz-Plata, R, Núñez-López, JA, Andrade-Collazo, H, Miranda-Vega, JE & Murrieta-Rico, FN 2024, 'Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection', Mathematics, vol. 12, no. 13, 1940. https://doi.org/10.3390/math12131940

APA

Sepulveda-Valdez, C., Sergiyenko, O., Tyrsa, V., Mercorelli, P., Rodríguez-Quiñonez, J. C., Flores-Fuentes, W., Zhirabok, A., Alaniz-Plata, R., Núñez-López, J. A., Andrade-Collazo, H., Miranda-Vega, J. E., & Murrieta-Rico, F. N. (2024). Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection. Mathematics, 12(13), Article 1940. https://doi.org/10.3390/math12131940

Vancouver

Sepulveda-Valdez C, Sergiyenko O, Tyrsa V, Mercorelli P, Rodríguez-Quiñonez JC, Flores-Fuentes W et al. Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection. Mathematics. 2024 Jul;12(13):1940. doi: 10.3390/math12131940

Bibtex

@article{f48d2d69be0548a68c8c4626bb953cb6,
title = "Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection",
abstract = "This paper introduces an autonomous robot designed for in-pipe structural health monitoring of oil/gas pipelines. This system employs a 3D Optical Laser Scanning Technical Vision System (TVS) to continuously scan the internal surface of the pipeline. This paper elaborates on the mathematical methodology of 3D laser surface scanning based on dynamic triangulation. This paper presents the mathematical framework governing the combined kinematics of the Mobile Robot (MR) and TVS. It discusses the custom design of the MR, adjusting it to use of robustized mathematics, and incorporating a laser scanner produced using a 3D printer. Both experimental and theoretical approaches are utilized to illustrate the formation of point clouds during surface scanning. This paper details the application of the simple and robust mathematical algorithm RANSAC for the preliminary processing of the measured point clouds. Furthermore, it contributes two distinct and simplified criteria for detecting defects in pipelines, specifically tailored for computer processing. In conclusion, this paper assesses the effectiveness of the proposed mathematical and physical method through experimental tests conducted under varying light conditions.",
keywords = "dynamic triangulation, optical laser scanner, pipeline structural health monitoring, RANSAC, TVS, Mathematics, Engineering",
author = "Cesar Sepulveda-Valdez and Oleg Sergiyenko and Vera Tyrsa and Paolo Mercorelli and Rodr{\'i}guez-Qui{\~n}onez, {Julio C.} and Wendy Flores-Fuentes and Alexey Zhirabok and Ruben Alaniz-Plata and N{\'u}{\~n}ez-L{\'o}pez, {Jos{\'e} A.} and Humberto Andrade-Collazo and Miranda-Vega, {Jes{\'u}s E.} and Murrieta-Rico, {Fabian N.}",
note = "Publisher Copyright: {\textcopyright} 2024 by the authors.",
year = "2024",
month = jul,
doi = "10.3390/math12131940",
language = "English",
volume = "12",
journal = "Mathematics",
issn = "2227-7390",
publisher = "MDPI AG",
number = "13",

}

RIS

TY - JOUR

T1 - Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection

AU - Sepulveda-Valdez, Cesar

AU - Sergiyenko, Oleg

AU - Tyrsa, Vera

AU - Mercorelli, Paolo

AU - Rodríguez-Quiñonez, Julio C.

AU - Flores-Fuentes, Wendy

AU - Zhirabok, Alexey

AU - Alaniz-Plata, Ruben

AU - Núñez-López, José A.

AU - Andrade-Collazo, Humberto

AU - Miranda-Vega, Jesús E.

AU - Murrieta-Rico, Fabian N.

N1 - Publisher Copyright: © 2024 by the authors.

PY - 2024/7

Y1 - 2024/7

N2 - This paper introduces an autonomous robot designed for in-pipe structural health monitoring of oil/gas pipelines. This system employs a 3D Optical Laser Scanning Technical Vision System (TVS) to continuously scan the internal surface of the pipeline. This paper elaborates on the mathematical methodology of 3D laser surface scanning based on dynamic triangulation. This paper presents the mathematical framework governing the combined kinematics of the Mobile Robot (MR) and TVS. It discusses the custom design of the MR, adjusting it to use of robustized mathematics, and incorporating a laser scanner produced using a 3D printer. Both experimental and theoretical approaches are utilized to illustrate the formation of point clouds during surface scanning. This paper details the application of the simple and robust mathematical algorithm RANSAC for the preliminary processing of the measured point clouds. Furthermore, it contributes two distinct and simplified criteria for detecting defects in pipelines, specifically tailored for computer processing. In conclusion, this paper assesses the effectiveness of the proposed mathematical and physical method through experimental tests conducted under varying light conditions.

AB - This paper introduces an autonomous robot designed for in-pipe structural health monitoring of oil/gas pipelines. This system employs a 3D Optical Laser Scanning Technical Vision System (TVS) to continuously scan the internal surface of the pipeline. This paper elaborates on the mathematical methodology of 3D laser surface scanning based on dynamic triangulation. This paper presents the mathematical framework governing the combined kinematics of the Mobile Robot (MR) and TVS. It discusses the custom design of the MR, adjusting it to use of robustized mathematics, and incorporating a laser scanner produced using a 3D printer. Both experimental and theoretical approaches are utilized to illustrate the formation of point clouds during surface scanning. This paper details the application of the simple and robust mathematical algorithm RANSAC for the preliminary processing of the measured point clouds. Furthermore, it contributes two distinct and simplified criteria for detecting defects in pipelines, specifically tailored for computer processing. In conclusion, this paper assesses the effectiveness of the proposed mathematical and physical method through experimental tests conducted under varying light conditions.

KW - dynamic triangulation

KW - optical laser scanner

KW - pipeline structural health monitoring

KW - RANSAC

KW - TVS

KW - Mathematics

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85198478706&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/71f3c941-1ae9-36a0-b023-1fe9d0fa5dc3/

U2 - 10.3390/math12131940

DO - 10.3390/math12131940

M3 - Journal articles

AN - SCOPUS:85198478706

VL - 12

JO - Mathematics

JF - Mathematics

SN - 2227-7390

IS - 13

M1 - 1940

ER -

DOI

Recently viewed

Publications

  1. The model of educational reconstruction: A framework for the design of theory-based content specific interventions
  2. Spatially assessing unpleasant places with hard- and soft-GIS methods
  3. A cognitive mapping approach to understanding public objection to energy infrastructure
  4. Internal forces in robotic manipulation and in general mechanisms using a geometric approach
  5. Cross-level Information and Influence in Mandated Participatory Planning: Alternative Pathways to Sustainable Water Management in Germany’s Implementation of the EU Water Framework Directive
  6. Science-Related Outcomes
  7. Inherent and induced anisotropic finite visco-plasticity with applications to the forming of DC06 sheets
  8. Consumer response to monochrome Guideline Daily Amount nutrition labels
  9. A web- And mobile-based intervention for comorbid, recurrent depression in patients with chronic back pain on sick leave (get.back)
  10. Performance Saga: Interview 07
  11. Thinking and Diagrams - An Introduction
  12. Self-regulated learning and self assessment in online mathematics bridging courses
  13. Erosion modelling designed for water quality simulation
  14. At what price? IP-related thoughts on new business models for space information
  15. Participation in protected area governance
  16. Machine Learning Analysis in the Diagnostics of the Dynamics of Ball Bearing with Different Radial Internal Clearance
  17. Sustainable Conference Organizing: Practices and Impact
  18. Toward a Framework for University-Based Entrepreneurial Ecosystems and Human Capital Development in Sub-Saharan Africa
  19. From the plurality of transdisciplinarity to concrete transdisciplinary methods
  20. Missiology: An Introduction to the Foundations, History, and Strategies of World Missions
  21. Governance statt Management oder: Management der Governance
  22. Facilitative-competitive interactions in an Old-Growth Forest: The Importance of Large-Diameter Trees as Benefactors and Stimulators for Forest Community Assembly
  23. Wie geben Tutoren Feedback?
  24. Credit constraints and exports
  25. Socio-technical transition governance and public opinion
  26. Internet and computer-based cognitive behavioral therapy for anxiety and depression in youth
  27. How Participatory Should Environmental Governance Be?
  28. De-minimis-Beihilfen (VO (EG) Nr. 1998/2006)
  29. Is Lean Production Really Lean?
  30. Speaking about vision, talking in the name of so much more
  31. Interaction effects of effort-reward imbalance and overcommitment on emotional exhaustion and job performance
  32. Environmental Management Accounting for Staff Appraisal
  33. The revolution is conditional? The conditionality of hydrogen fuel cell expectations in five European countries
  34. Networks of Clusters