Fatigue crack propagation in AA5083 structures additively manufactured via multi-layer friction surfacing

Research output: Journal contributionsComments / Debate / ReportsResearch

Standard

Fatigue crack propagation in AA5083 structures additively manufactured via multi-layer friction surfacing. / Kallien, Zina; Knothe-Horstmann, Christian; Klusemann, Benjamin.
In: Additive Manufacturing Letters, Vol. 6, 100154, 01.07.2023.

Research output: Journal contributionsComments / Debate / ReportsResearch

Harvard

APA

Vancouver

Bibtex

@article{7407488d0c2142cc8002e9c8bc9c9cec,
title = "Fatigue crack propagation in AA5083 structures additively manufactured via multi-layer friction surfacing",
abstract = "Multi-layer friction surfacing (MLFS) is a layer deposition technique that allows building structures from metals in solid state. As approach for additive manufacturing, the re-heating during subsequent deposition processes is significantly lower compared to fusion-based techniques. Available research work presents promising properties of MLFS structures from aluminum alloys, reporting no significant directional dependency in terms of tensile strength. The present study focuses on the fatigue crack propagation behavior and the role of layer-to-substrate (LTS) as well as layer-to-layer (LTL) interfaces. Compact tension specimens were extracted in different orientations from the MLFS stacks built from AA5083. The crack propagation parallel and perpendicular to the LTL interfaces as well as from the substrate material across LTS interface into the MLFS deposited material was investigated. The results show that LTL interfaces play no significant role for the crack propagation, i.e. specimens with LTL interfaces perpendicular and parallel to the crack presented no significant differences in terms of their fatigue crack propagation behavior. The specimens where the crack propagated from the substrate material across the LTS interface into the MLFS deposited material showed higher fatigue life than the specimens with crack propagation in the MLFS deposited material only. Crack retardation can be observed as long as the crack propagates within the substrate material, which is associated with compressive residual stresses introduced in the substrate during the layer deposition process.",
keywords = "Engineering, Multi-layer friction surfacing, Additive manufacturing, Solid state layer deposition, Fatigue crack propagation, Aluminum",
author = "Zina Kallien and Christian Knothe-Horstmann and Benjamin Klusemann",
note = "Publisher Copyright: {\textcopyright} 2023 The Author(s)",
year = "2023",
month = jul,
day = "1",
doi = "10.1016/j.addlet.2023.100154",
language = "English",
volume = "6",
journal = "Additive Manufacturing Letters",
issn = "2772-3690",
publisher = "Elsevier B.V.",

}

RIS

TY - JOUR

T1 - Fatigue crack propagation in AA5083 structures additively manufactured via multi-layer friction surfacing

AU - Kallien, Zina

AU - Knothe-Horstmann, Christian

AU - Klusemann, Benjamin

N1 - Publisher Copyright: © 2023 The Author(s)

PY - 2023/7/1

Y1 - 2023/7/1

N2 - Multi-layer friction surfacing (MLFS) is a layer deposition technique that allows building structures from metals in solid state. As approach for additive manufacturing, the re-heating during subsequent deposition processes is significantly lower compared to fusion-based techniques. Available research work presents promising properties of MLFS structures from aluminum alloys, reporting no significant directional dependency in terms of tensile strength. The present study focuses on the fatigue crack propagation behavior and the role of layer-to-substrate (LTS) as well as layer-to-layer (LTL) interfaces. Compact tension specimens were extracted in different orientations from the MLFS stacks built from AA5083. The crack propagation parallel and perpendicular to the LTL interfaces as well as from the substrate material across LTS interface into the MLFS deposited material was investigated. The results show that LTL interfaces play no significant role for the crack propagation, i.e. specimens with LTL interfaces perpendicular and parallel to the crack presented no significant differences in terms of their fatigue crack propagation behavior. The specimens where the crack propagated from the substrate material across the LTS interface into the MLFS deposited material showed higher fatigue life than the specimens with crack propagation in the MLFS deposited material only. Crack retardation can be observed as long as the crack propagates within the substrate material, which is associated with compressive residual stresses introduced in the substrate during the layer deposition process.

AB - Multi-layer friction surfacing (MLFS) is a layer deposition technique that allows building structures from metals in solid state. As approach for additive manufacturing, the re-heating during subsequent deposition processes is significantly lower compared to fusion-based techniques. Available research work presents promising properties of MLFS structures from aluminum alloys, reporting no significant directional dependency in terms of tensile strength. The present study focuses on the fatigue crack propagation behavior and the role of layer-to-substrate (LTS) as well as layer-to-layer (LTL) interfaces. Compact tension specimens were extracted in different orientations from the MLFS stacks built from AA5083. The crack propagation parallel and perpendicular to the LTL interfaces as well as from the substrate material across LTS interface into the MLFS deposited material was investigated. The results show that LTL interfaces play no significant role for the crack propagation, i.e. specimens with LTL interfaces perpendicular and parallel to the crack presented no significant differences in terms of their fatigue crack propagation behavior. The specimens where the crack propagated from the substrate material across the LTS interface into the MLFS deposited material showed higher fatigue life than the specimens with crack propagation in the MLFS deposited material only. Crack retardation can be observed as long as the crack propagates within the substrate material, which is associated with compressive residual stresses introduced in the substrate during the layer deposition process.

KW - Engineering

KW - Multi-layer friction surfacing

KW - Additive manufacturing

KW - Solid state layer deposition

KW - Fatigue crack propagation

KW - Aluminum

UR - https://www.mendeley.com/catalogue/268cb8e8-da56-3231-8ec0-57640a793416/

UR - http://www.scopus.com/inward/record.url?scp=85164018897&partnerID=8YFLogxK

U2 - 10.1016/j.addlet.2023.100154

DO - 10.1016/j.addlet.2023.100154

M3 - Comments / Debate / Reports

VL - 6

JO - Additive Manufacturing Letters

JF - Additive Manufacturing Letters

SN - 2772-3690

M1 - 100154

ER -

Recently viewed

Researchers

  1. Alexander Bachmann

Publications

  1. Uniting against a common enemy
  2. Creativity in Spaces of Possibilities for Sustainable Urban Development
  3. Cognitive load and science text comprehension
  4. Science teaching and learning in schools
  5. Australian Graziers value sparse trees in their pastures: A viewshed analysis of Photo-elicitation
  6. Multiple import sourcing.
  7. Discrete-Point Analysis of the Energy Demand of Primary versus Secondary Metal Production
  8. Value, values, symbols and outcomes
  9. Productivity and the product scope of multi-product firms:
  10. Shrub management is the principal driver of differing population sizes between native and invasive populations of Rosa rubiginosa L
  11. How transformational leadership transforms followers’ affect and work engagement
  12. The relationship between working alliance and client outcomes in coaching
  13. Using nestedness and species-accumulation analyses to strengthen a conservation plan for littoral forest birds in south-eastern Madagascar
  14. Between mutuality, autonomy and domination
  15. The Effect of Dislike on Accuracy and Bias in Person Perception
  16. Effect of cascading of higher-lying states on a delayed 1 s-2 p transition after beam-foil excitation of 56 MeV hydrogen-like oxygen and fluorine
  17. The well- and unwell-being of a child
  18. Divide and Share
  19. The Multiple Self Objection to the Prudential Lifespan Account
  20. art thinking doing art: Artistic Practices in Educational Contexts from 1900 to Today
  21. Characteristics of adaptive teacher behavior in mathematical modelling
  22. How action-oriented entrepreneurship training transforms university students into entrepreneurs: Insights from a qualitative study
  23. Biopolitical Interventions in the Urban Data Space
  24. Boundaryless working hours and recovery in Germany
  25. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems