Data-Driven flood detection using neural networks

Research output: Journal contributionsConference article in journalResearchpeer-review

Authors

  • Keiller Nogueira
  • Samuel G. Fadel
  • Icaro C. Dourado
  • Rafael O. De Werneck
  • Javier A. Munoz
  • Otavio A.B. Penatti
  • Rodrigo T. Calumby
  • Lin Tzy Li
  • Jefersson A.Dos Santos
  • Ricardo Da S. Torres

This paper describes the approaches used by our team (MultiBrasil) for the Multimedia Satellite Task at MediaEval 2017. For both disaster image retrieval and flood-detection in satellite images, we employ neural networks for end-to-end learning. Specifically, for the first subtask, we exploit Convolutional Networks and Relation Networks while, for the latter, dilated Convolutional Networks were employed.

Original languageEnglish
Book seriesCEUR Workshop Proceedings
Volume1984
Number of pages3
ISSN1613-0073
Publication statusPublished - 2017
Externally publishedYes
EventMultimedia Benchmark Workshop - MediaEval 2017 - Trinity College, Dublin, Ireland
Duration: 13.09.201715.09.2017
http://www.multimediaeval.org/mediaeval2017/