Bioremediation of Chlorinated Pesticides in Field-Contaminated Soils and Suitability of Tenax Solid-Phase Extraction as a Predictor of Its Effectiveness

Research output: Journal contributionsJournal articlesResearchpeer-review

Authors

Bioremediation is intensively studied today as a treatment method for soil contaminated with chlorinated pesticides, chemicals counted among persistent organic pollutants. In the presented work, results of desorption kinetics study using consecutive Tenax TA solid phase extraction (SPE) were tested as predictors of 3-wk anaerobic soil bioremediation effectiveness for chlorinated pesticides γ-HCH, DDT, and methoxychlor. Field-contaminated samples were used in these experiments, and conditions of bioremediation tests were based on previous research. Amounts of pesticides removed during bioremediation (43–98% of initial concentrations) were in most cases much larger (average ratio 1.37) than rapidly desorbing fractions estimated in SPE using two-compartment model of desorption kinetics. The scatter of results was also considerable (standard deviation 0.45). However, there was a statistically significant correlation between amounts removed and rapidly desorbing fractions (R2 = 0.64), indicating a relationship between degradability and desorbability. Nonetheless, determination of rapidly desorbing fractions was considered rather a poor indicator of soil bioremediation efficiency for chlorinated pesticides. The total amounts of pesticides desorbed by Tenax in 72 h performed better in this respect (R2 = 0.73, fraction removed/desorbed = 1.10 ± 0.20, average ± standard deviation). Disappearance of DDT during bioremediation was accompanied by DDD formation but this was considerably lower than results expected from stoichiometry.
Original languageEnglish
JournalClean - Soil, Air, Water
Volume40
Issue number8
Pages (from-to)864-869
Number of pages6
ISSN1863-0650
DOIs
Publication statusPublished - 08.2012

    Research areas

  • Bioavailability, DDT, Lindane, Methoxychlor

DOI