Professorship for materials mechanics

Organisational unit: Professoship

Organisation profile

The professorship for materials mechanics with a focus on process simulation is a shared professorship carried out in cooperation with the Helmholtz-Zentrum hereon GmbH. In particular, this is concerned with the digital modelling of technological production processes and materials, whereby considerable focus is placed on local modification processes, solid state joining processes and forming processes. The modelling approaches which are used for these range from micromechanics (e.g. crystal plasticity and phase field simulations), to continuum mechanics for describing material behaviour, to approaches for complex process simulations.

Main research areas

At the same time, one of the main focuses of the activities carried out by the professorship at the Leuphana is the development and application of mathematical models (material models) for describing microstructure development and the deformation behaviour of various metallic materials across multiple length scales. These developments often take place in close conjunction with the experimental work being carried out at the hereon. The length scale and timescale on which the relevant processes in the material take place or on which these are modelled depends on the material, the process and the component. Over the past few years, the work group has built up a vast wealth of experience when it comes to modelling many material systems such as these. In addition to carrying out intense studies on deformation processes in metallic materials, the work group has also dealt with additional material systems such as metallic glasses and polymers.

At the Helmholtz-Zentrum hereon, the professorship deals specifically with the experimental study and process modelling of solid state joining processes and manufacturing processes which act on a local level. Some named examples of these are joining processes such as friction stir welding and laser welding, as well as additive manufacturing processes such as friction welding and laser deposition welding. This is accompanied by local modification processes for the targeted adjustment of residual stresses (residual stress engineering), such as laser shock peening and hammer peening. One of the fundamental goals of these research activities is to investigate the entire system of process, microstructure and property through a combination of experimental and simulation-based approaches in order to achieve an improved physical understanding thereof. By adapting the process parameters in a targeted manner, the insights gained can be used to optimise material or structural behaviour, e.g. with regard to deformation and failure behaviour.

The professorship plays an active role in various national and international organisations such as the GAMM (International Association of Applied Mathematics and Mechanics) or the ZHM (Centre for Advanced Materials).

Key teaching focuses are in the fields of applied mechanics and material modelling, as well as in the provision of additional engineering basics.

  1. 2024
  2. Published

    Eigenstrain method in simulations of laser peen forming of curved surfaces

    Poltl, D., Teja Sala, S., Kashaev, N. & Klusemann, B., 15.05.2024, Material Forming, ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024. Araujo, A. C., Cantarel, A., Chabert, F., Korycki, A., Olivier, P. & Schmidt, F. (eds.). Millersville: Association of American Publishers, p. 2355-2363 9 p. (Materials Research Proceedings; vol. 41).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  3. Published

    Numerical simulation of friction extrusion: process characteristics and material deformation due to friction

    Diyoke, G., Rath, L., Chafle, R., Ben Khalifa, N. & Klusemann, B., 05.2024, In: International Journal of Material Forming. 17, 3, 13 p., 26.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Experimental investigation of crack propagation mechanism in refill friction stir spot joints of AA6082-T6

    Becker, N., dos Santos, J. F. & Klusemann, B., 16.04.2024, In: Engineering Fracture Mechanics. 300, 11 p., 109963.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Investigation of microstructural and mechanical properties in AA2024-T351 multi-layer friction surfacing

    Hoffmann, M., Roos, A. & Klusemann, B., 30.03.2024, In: Surface and Coatings Technology. 480, 11 p., 130610.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    Behavior of microstructure and mechanical properties in the stir zone of friction stir welded ME21 magnesium alloy

    Pasetti-Roza, A., Victoria-Hernandez, J., Costa Pereira da Cunha, P. H., de Lima Lessa, C. R., Andrei Bergmann, L., Kurz, G., Letzig, D. & Klusemann, B., 01.03.2024, In: Journal of Materials Research and Technology. 29, p. 4895-4901 7 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Application of friction surfacing for solid state additive manufacturing of cylindrical shell structures

    Kallien, Z., Rath, L., Roos, A. & Klusemann, B., 01.02.2024, In: Additive Manufacturing Letters. 8, 8 p., 100184.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Application of novel constrained friction processing method to produce fine grained biomedical Mg-Zn-Ca alloy

    Chen, T., Fu, B., Shen, J., Suhuddin, U. F. H. R., Wiese, B., Huang, Y., Wang, M., dos Santos, J. F., Bergmann, J. P. & Klusemann, B., 02.2024, In: Journal of Magnesium and Alloys. 12, 2, p. 516-529 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published

    Effect of filler materials on the tensile properties and fracture toughness of laser beam welded AA2198 joints under different ageing conditions

    Examilioti, T. N., Karanikolas, D., Riekehr, S., Al-Hamdany, N., Papanikos, P., Klusemann, B., Kashaev, N. & Alexopoulos, N. D., 23.01.2024, In: Engineering Fracture Mechanics. 295, 20 p., 109811.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

    Bock, F. E., Kallien, Z., Huber, N. & Klusemann, B., 01.01.2024, In: Computer Methods in Applied Mechanics and Engineering. 418, Part A, 26 p., 116453.

    Research output: Journal contributionsJournal articlesResearch

  11. Published

    Deep Rolling for Tailoring Residual Stresses of AA2024 Sheet Metals

    Lehmann, J., Keller, S., Esterl, F., Kashaev, N., Klusemann, B. & Ben Khalifa, N., 2024, Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity: ICTP 2023 - Volume 3. Mocellin, K., Bouchard, P.-O., Bigot, R. & Balan, T. (eds.). Cham: Springer International Publishing AG, Vol. 3. p. 352-362 11 p. (Lecture Notes in Mechanical Engineering).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Previous 1 2 3 4 5 6 7 8 ...16 Next