Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. 2021
  2. Published

    Effect of the gap width in AZ31 magnesium alloy joints obtained by friction stir welding

    Chiuzuli, F. R., Batistão, B. F., Bergmann, L. A., Alcântara, N. G. D., dos Santos, J. F., Klusemann, B. & Gargarella, P., 01.11.2021, In: Journal of Materials Research and Technology. 15, p. 5297-5306 10 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  3. Published

    Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel

    Fu, B., Shen, J., Suhuddin, U. F. H. R., Pereira, A. A. C., Maawad, E., dos Santos, J. F., Klusemann, B. & Rethmeier, M., 01.11.2021, In: Materials and Design. 209, 18 p., 109997.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding

    Fu, B., Shen, J., Suhuddin, U. F. H. R., Chen, T., dos Santos, J. F., Klusemann, B. & Rethmeier, M., 01.10.2021, In: Scripta Materialia. 203, 6 p., 114113.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Tailoring of residual stresses by specific use of defined prestress during laser shock peening

    Schwab, K. C., Keller, S., Kashaev, N. & Klusemann, B., 01.09.2021, In: Journal of Materials Processing Technology. 295, 11 p., 117154.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    Comparing the local-global deformation mechanism in different friction stir welding sequences of Ti-4Al-0.005B titanium alloy T-joints

    Su, Y., Li, W., Shen, J., Fu, B., dos Santos, J. F., Klusemann, B. & Vairis, A., 17.08.2021, In: Materials Science and Engineering A. 823, 141698.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Modeling precipitation kinetics for multi-phase and multi-component systems using particle size distributions via a moving grid technique

    Herrnring, J., Sundman, B., Staron, P. & Klusemann, B., 15.08.2021, In: Acta Materialia. 215, 14 p., 117053.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Empowering materials processing and performance from data and AI

    Chinesta, F., Cueto, E. & Klusemann, B., 06.08.2021, In: Materials. 14, 16, 4 p., 4409.

    Research output: Journal contributionsOther (editorial matter etc.)Research

  9. Published

    Effect of filler wire and post weld heat treatment on the mechanical properties of laser beam-welded AA2198

    Examilioti, T. N., Kashaev, N., Ventzke, V., Klusemann, B. & Alexopoulos, N. D., 01.08.2021, In: Materials Characterization. 178, 14 p., 111257.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Phase-field modelling for fatigue crack growth under laser shock peening-induced residual stresses

    Seiler, M., Keller, S., Kashaev, N., Klusemann, B. & Kästner, M., 01.08.2021, In: Archive of Applied Mechanics. 91, 8, p. 3709-3723 15 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  11. Published

    Influence of Mg content in Al alloys on processing characteristics and dynamically recrystallized microstructure of friction surfacing deposits

    Ehrich, J., Roos, A., Klusemann, B. & Hanke, S., 05.07.2021, In: Materials Science and Engineering A. 819, 141407.

    Research output: Journal contributionsJournal articlesResearchpeer-review

Previous 1...3 4 5 6 7 8 9 10 ...14 Next