Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. 2022
  2. Published

    Experimental and numerical investigation of laser beam-welded Al-Cu-Li joints using micro-mechanical characteristics

    Examilioti, T. N., Papanikos, P., Kashaev, N., Klusemann, B. & Alexopoulos, N. D., 01.07.2022, In: Journal of Materials Research and Technology. 19, p. 2431-2446 16 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  3. Published

    Fundamental study of multi-track friction surfacing deposits for dissimilar aluminum alloys with application to additive manufacturing

    Soujon, M., Kallien, Z., Roos, A., Zeller-Plumhoff, B. & Klusemann, B., 01.07.2022, In: Materials and Design. 219, 15 p., 110786.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Combined experimental-numerical analysis of the temperature evolution and distribution during friction surfacing

    Kallien, Z. & Klusemann, B., 15.05.2022, In: Surface and Coatings Technology. 437, 11 p., 128350.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Changes in processing characteristics and microstructural evolution during friction extrusion of aluminum

    Halak, R. M., Rath, L., Suhuddin, U. F. H. R., dos Santos, J. F. & Klusemann, B., 01.05.2022, In: International Journal of Material Forming. 15, 3, 14 p., 24.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    Tailoring powder strengths for enhanced quality of cold sprayed Al6061 deposits

    Huang, C., List, A., Shen, J., Fu, B., Yin, S., Chen, T., Klusemann, B., Gärtner, F. & Klassen, T., 01.03.2022, In: Materials and Design. 215, 18 p., 110494.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Coupled Modeling Approach for Laser Shock Peening of AA2198-T3: From Plasma and Shock Wave Simulation to Residual Stress Prediction

    Pozdnyakov, V., Keller, S., Kashaev, N., Klusemann, B. & Oberrath, J., 01.01.2022, In: Metals. 12, 1, 19 p., 107.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Numerical investigation of laser beam-welded AA2198 joints under different artificial ageing conditions

    Examilioti, T., Germanou, A., Papanikos, P., Kashaev, N., Klusemann, B. & Alexopoulos, N. D., 01.01.2022, In: Procedia Structural Integrity. 42, p. 244-250 7 p.

    Research output: Journal contributionsConference article in journalResearch

  9. 2021
  10. Published

    Multimodal analysis of spatially heterogeneous microstructural refinement and softening mechanisms in three-pass friction stir processed Al-4Si alloy

    Escobar, J., Gwalani, B., Olszta, M., Silverstein, J., Overman, N., Bergmann, L., dos Santos, J. F., Staron, P., Maawad, E., Klusemann, B., Mathaudhu, S. & Devaraj, A., 20.12.2021, In: Journal of Alloys and Compounds. 887, 13 p., 161351.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  11. Published

    Experimental and numerical analysis of refill friction stir spot welding of thin AA7075-T6 sheets

    Janga, V. S. R., Awang, M., Yamin, M. F., Suhuddin, U. F. H., Klusemann, B. & dos Santos, J. F., 06.12.2021, In: Materials. 14, 23, 20 p., 7485.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  12. Published

    Simulation of fatigue crack growth in residual‐stress‐afflicted specimen with a phase‐field model

    Seiler, M., Keller, S., Kashaev, N., Klusemann, B. & Kästner, M., 01.12.2021, In: PAMM. 21, 1, 2 p., e202100210.

    Research output: Journal contributionsConference abstract in journalResearch

Previous 12 3 4 5 6 7 8 9 ...14 Next