Network measures of mixing

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Network measures of mixing. / Banisch, Ralf; Koltai, Péter; Padberg-Gehle, Kathrin.
in: Chaos, Jahrgang 29, Nr. 6, 063125, 06.2019.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Banisch, R, Koltai, P & Padberg-Gehle, K 2019, 'Network measures of mixing', Chaos, Jg. 29, Nr. 6, 063125. https://doi.org/10.1063/1.5087632

APA

Banisch, R., Koltai, P., & Padberg-Gehle, K. (2019). Network measures of mixing. Chaos, 29(6), Artikel 063125. https://doi.org/10.1063/1.5087632

Vancouver

Banisch R, Koltai P, Padberg-Gehle K. Network measures of mixing. Chaos. 2019 Jun;29(6):063125. doi: 10.1063/1.5087632

Bibtex

@article{708eeeb6be8543f6a41eb41bd44536fd,
title = "Network measures of mixing",
abstract = "Transport and mixing processes in fluid flows can be studied directly from Lagrangian trajectory data, such as those obtained from particle tracking experiments. Recent work in this context highlights the application of graph-based approaches, where trajectories serve as nodes and some similarity or distance measure between them is employed to build a (possibly weighted) network, which is then analyzed using spectral methods. Here, we consider the simplest case of an unweighted, undirected network and analytically relate local network measures such as node degree or clustering coefficient to flow structures. In particular, we use these local measures to divide the family of trajectories into groups of similar dynamical behavior via manifold learning methods.",
keywords = "Mathematics",
author = "Ralf Banisch and P{\'e}ter Koltai and Kathrin Padberg-Gehle",
year = "2019",
month = jun,
doi = "10.1063/1.5087632",
language = "English",
volume = "29",
journal = "Chaos",
issn = "1054-1500",
publisher = "American Institute of Physics Inc.",
number = "6",

}

RIS

TY - JOUR

T1 - Network measures of mixing

AU - Banisch, Ralf

AU - Koltai, Péter

AU - Padberg-Gehle, Kathrin

PY - 2019/6

Y1 - 2019/6

N2 - Transport and mixing processes in fluid flows can be studied directly from Lagrangian trajectory data, such as those obtained from particle tracking experiments. Recent work in this context highlights the application of graph-based approaches, where trajectories serve as nodes and some similarity or distance measure between them is employed to build a (possibly weighted) network, which is then analyzed using spectral methods. Here, we consider the simplest case of an unweighted, undirected network and analytically relate local network measures such as node degree or clustering coefficient to flow structures. In particular, we use these local measures to divide the family of trajectories into groups of similar dynamical behavior via manifold learning methods.

AB - Transport and mixing processes in fluid flows can be studied directly from Lagrangian trajectory data, such as those obtained from particle tracking experiments. Recent work in this context highlights the application of graph-based approaches, where trajectories serve as nodes and some similarity or distance measure between them is employed to build a (possibly weighted) network, which is then analyzed using spectral methods. Here, we consider the simplest case of an unweighted, undirected network and analytically relate local network measures such as node degree or clustering coefficient to flow structures. In particular, we use these local measures to divide the family of trajectories into groups of similar dynamical behavior via manifold learning methods.

KW - Mathematics

UR - http://www.scopus.com/inward/record.url?scp=85068133690&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/18116c63-1398-3650-8ab6-89a40db186a5/

U2 - 10.1063/1.5087632

DO - 10.1063/1.5087632

M3 - Journal articles

C2 - 31266326

AN - SCOPUS:85068133690

VL - 29

JO - Chaos

JF - Chaos

SN - 1054-1500

IS - 6

M1 - 063125

ER -

Links

DOI

Zuletzt angesehen

Forschende

  1. Niko Pepe Engfer

Publikationen

  1. West Africa
  2. Die Kunstreligion
  3. Portuguese part-of-speech tagging with large margin structure learning
  4. On Gender Statistics in the Art Field and Leading Positions in the International Sphere
  5. Positional income concerns and personality
  6. Compressive creep behavior and microstructural evolution of sand-cast and peak-aged Mg–12Gd–0.4Zr alloy at 250 °C
  7. Business Model Innovation for Sustainable Energy
  8. Abiotic and biotic drivers of tree trait effects on soil microbial biomass and soil carbon concentration
  9. Polizei und Jugendliche in der Geschichte der Bundesrepublik
  10. Die Verbreitung einer wegweisenden Idee: Der Beitrag der UN-Dekade für die Diffusion von Bildung für nachhaltige Entwicklung
  11. Smartphones im Unterricht – Wollen das Schülerinnen und Schüler überhaupt?!
  12. Local and landscape level variables influence butterfly diversity in critically endangered South African renosterveld
  13. Reiseanalyse Trendstudie 2030 - Urlaubsnachfrage im Quellmarkt Deutschland.
  14. Kwame Gyekye’s Critical Dialogue with Kant’s Ethics and its Political Consequences
  15. Mainstreaming of Sustainable Cotton in the German Clothing Industry
  16. Entrepreneurial Marketing and Capital Acquisition
  17. Fernunterricht und neue Informationstechnologien
  18. Bürgerlich-rechtliche, öffentlich-rechtliche und strafrechtliche Zwangsunterbringung
  19. Rezension zu Christoph Weischer: Sozialforschung. UVK Verlagsgesellschaft (Konstanz) 2007. 415 Seiten
  20. Belastung von Krankenhausabwasser mit gefährlichen Stoffen im Sinne §7a WHG
  21. Un nietzschianesimo senza riserve. La volontà di potenza nel dispositivo del potere pastorale
  22. Eine ökonomische Analyse der neuen Verbrauchsgüterkaufrichtlinie zum Gewährleistungsrecht
  23. Konzept eines Orientierungsrahmens für den Lernbereich Globale Entwicklung im Fach Informatik im Rahmen der Bildung fur Nachhaltige Entwicklung