Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation

Publikation: Beiträge in SammelwerkenKapitelbegutachtet

Standard

Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation. / Mercorelli, Paolo.
New Developments in Mathematics Research. Hrsg. / Natalie L Clarke; Alex P Ronson. Nova Science Publishers, Inc., 2011. S. 85-104.

Publikation: Beiträge in SammelwerkenKapitelbegutachtet

Harvard

Mercorelli, P 2011, Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation. in NL Clarke & AP Ronson (Hrsg.), New Developments in Mathematics Research. Nova Science Publishers, Inc., S. 85-104.

APA

Mercorelli, P. (2011). Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation. In N. L. Clarke, & A. P. Ronson (Hrsg.), New Developments in Mathematics Research (S. 85-104). Nova Science Publishers, Inc..

Vancouver

Mercorelli P. Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation. in Clarke NL, Ronson AP, Hrsg., New Developments in Mathematics Research. Nova Science Publishers, Inc. 2011. S. 85-104

Bibtex

@inbook{8b524f19b1944e37b6f09474d286ca03,
title = "Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation",
abstract = "The noise detection and the data cleaning find application in data com-pressions for images and voice as well as in their analysis and recognition,datatransmission,datareconciliation,fault detection and in general in all application area of the signal processing and measurements.The content of this paper can offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding tech-nique implying a free thresholding one,running in wavelet packets.The author presents a technique which deals with a free thresholding method related to the on-line peak noise variance estimation even for signals with a small S/N ratio.The se cond innovative aspect consists of use of wavelet packets which give more elasticity to the technique.The basic idea is to characterize the noise like an in coherent part of the measure dsignal.It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum.In this sense the proposed median based algorithm can be seen a s an entropy function and this analogyis shown.The paper provides to show general properties of the wavelet packet son which the proposed procedure is based.The developed algorithmis to tally general even though it is applied by using Haar wavelet packets and it is present in some industrial software plat-forms to detect sensor out liers because of their easy structure. More,it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit with in ABB's(Asea Brown Boveri)industry division.",
keywords = "Data reconciliation, Fault detection, Haar functions, Noise detection, Signal processing, Variance, Wavelets, Wavelets'packets, Engineering",
author = "Paolo Mercorelli",
year = "2011",
language = "English",
isbn = "9781613242520",
pages = "85--104",
editor = "Clarke, {Natalie L} and Ronson, {Alex P}",
booktitle = "New Developments in Mathematics Research",
publisher = "Nova Science Publishers, Inc.",
address = "United States",

}

RIS

TY - CHAP

T1 - Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation

AU - Mercorelli, Paolo

PY - 2011

Y1 - 2011

N2 - The noise detection and the data cleaning find application in data com-pressions for images and voice as well as in their analysis and recognition,datatransmission,datareconciliation,fault detection and in general in all application area of the signal processing and measurements.The content of this paper can offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding tech-nique implying a free thresholding one,running in wavelet packets.The author presents a technique which deals with a free thresholding method related to the on-line peak noise variance estimation even for signals with a small S/N ratio.The se cond innovative aspect consists of use of wavelet packets which give more elasticity to the technique.The basic idea is to characterize the noise like an in coherent part of the measure dsignal.It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum.In this sense the proposed median based algorithm can be seen a s an entropy function and this analogyis shown.The paper provides to show general properties of the wavelet packet son which the proposed procedure is based.The developed algorithmis to tally general even though it is applied by using Haar wavelet packets and it is present in some industrial software plat-forms to detect sensor out liers because of their easy structure. More,it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit with in ABB's(Asea Brown Boveri)industry division.

AB - The noise detection and the data cleaning find application in data com-pressions for images and voice as well as in their analysis and recognition,datatransmission,datareconciliation,fault detection and in general in all application area of the signal processing and measurements.The content of this paper can offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding tech-nique implying a free thresholding one,running in wavelet packets.The author presents a technique which deals with a free thresholding method related to the on-line peak noise variance estimation even for signals with a small S/N ratio.The se cond innovative aspect consists of use of wavelet packets which give more elasticity to the technique.The basic idea is to characterize the noise like an in coherent part of the measure dsignal.It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum.In this sense the proposed median based algorithm can be seen a s an entropy function and this analogyis shown.The paper provides to show general properties of the wavelet packet son which the proposed procedure is based.The developed algorithmis to tally general even though it is applied by using Haar wavelet packets and it is present in some industrial software plat-forms to detect sensor out liers because of their easy structure. More,it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit with in ABB's(Asea Brown Boveri)industry division.

KW - Data reconciliation

KW - Fault detection

KW - Haar functions

KW - Noise detection

KW - Signal processing

KW - Variance

KW - Wavelets

KW - Wavelets'packets

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=84895347837&partnerID=8YFLogxK

M3 - Chapter

AN - SCOPUS:84895347837

SN - 9781613242520

SP - 85

EP - 104

BT - New Developments in Mathematics Research

A2 - Clarke, Natalie L

A2 - Ronson, Alex P

PB - Nova Science Publishers, Inc.

ER -

Zuletzt angesehen

Publikationen

  1. Preventive Emergency Detection Based on the Probabilistic Evaluation of Distributed, Embedded Sensor Networks
  2. Heuristic approximation and computational algorithms for closed networks
  3. Parsing Causal Models – An Instance Segmentation Approach
  4. Using haar wavelets for fault detection in technical processes
  5. Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques
  6. Computational modeling of material flow networks
  7. Inversion of Fuzzy Neural Networks for the Reduction of Noise in the Control Loop for Automotive Applications
  8. Wavelet based Fault Detection and RLS Parameter Estimation of Conductive Fibers with a Simultaneous Estimation of Time-Varying Disturbance
  9. ACL–adaptive correction of learning parameters for backpropagation based algorithms
  10. Finding Similar Movements in Positional Data Streams
  11. Learning Rotation Sensitive Neural Network for Deformed Objects' Detection in Fisheye Images
  12. A two-step approach for the prediction of mood levels based on diary data
  13. Modeling and Performance Analysis of a Node in Fault Tolerant Wireless Sensor Networks
  14. Evaluating OWL 2 reasoners in the context of checking entity-relationship diagrams during software development
  15. Using trait-based filtering as a predictive framework for conservation
  16. A Multivariate Method for Dynamic System Analysis
  17. Authenticity and authentication in language learning
  18. Supervised clustering of streaming data for email batch detection
  19. Modified dynamic programming approach for offline segmentation of long hydrometeorological time series
  20. A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms
  21. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM
  22. Substructure, subgraph, and walk counts as measures of the complexity of graphs and molecules.
  23. Modeling precipitation kinetics for multi-phase and multi-component systems using particle size distributions via a moving grid technique
  24. Homogenization modeling of thin-layer-type microstructures
  25. Multi-view learning with dependent views
  26. Machine Learning and Knowledge Discovery in Databases
  27. Model inversion using fuzzy neural network with boosting of the solution
  28. Using Complexity Metrics to Assess Silent Reading Fluency
  29. Comparing the Sensitivity of Social Networks, Web Graphs, and Random Graphs with Respect to Vertex Removal
  30. A coding scheme to analyse global text processing in computer supported collaborative learning: What eye movements can tell us
  31. Reading and Calculating in Word Problem Solving