Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation
Research output: Contributions to collected editions/works › Chapter › peer-review
Standard
New Developments in Mathematics Research. ed. / Natalie L Clarke; Alex P Ronson. Nova Science Publishers, Inc., 2011. p. 85-104.
Research output: Contributions to collected editions/works › Chapter › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - CHAP
T1 - Median based algorithm as an entropy function for noise detectionin wavelet trees for data reconciliation
AU - Mercorelli, Paolo
PY - 2011
Y1 - 2011
N2 - The noise detection and the data cleaning find application in data com-pressions for images and voice as well as in their analysis and recognition,datatransmission,datareconciliation,fault detection and in general in all application area of the signal processing and measurements.The content of this paper can offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding tech-nique implying a free thresholding one,running in wavelet packets.The author presents a technique which deals with a free thresholding method related to the on-line peak noise variance estimation even for signals with a small S/N ratio.The se cond innovative aspect consists of use of wavelet packets which give more elasticity to the technique.The basic idea is to characterize the noise like an in coherent part of the measure dsignal.It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum.In this sense the proposed median based algorithm can be seen a s an entropy function and this analogyis shown.The paper provides to show general properties of the wavelet packet son which the proposed procedure is based.The developed algorithmis to tally general even though it is applied by using Haar wavelet packets and it is present in some industrial software plat-forms to detect sensor out liers because of their easy structure. More,it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit with in ABB's(Asea Brown Boveri)industry division.
AB - The noise detection and the data cleaning find application in data com-pressions for images and voice as well as in their analysis and recognition,datatransmission,datareconciliation,fault detection and in general in all application area of the signal processing and measurements.The content of this paper can offer the possibility to improve the state of the art of all those procedures with denoising methods which use a thresholding tech-nique implying a free thresholding one,running in wavelet packets.The author presents a technique which deals with a free thresholding method related to the on-line peak noise variance estimation even for signals with a small S/N ratio.The se cond innovative aspect consists of use of wavelet packets which give more elasticity to the technique.The basic idea is to characterize the noise like an in coherent part of the measure dsignal.It is performed through the wavelet tree by choosing the subspaces where the median value of the wavelet components has minimum.In this sense the proposed median based algorithm can be seen a s an entropy function and this analogyis shown.The paper provides to show general properties of the wavelet packet son which the proposed procedure is based.The developed algorithmis to tally general even though it is applied by using Haar wavelet packets and it is present in some industrial software plat-forms to detect sensor out liers because of their easy structure. More,it is currently integrated in the inferential modeling platform of the Advanced Control and Simulation Solution Responsible Unit with in ABB's(Asea Brown Boveri)industry division.
KW - Data reconciliation
KW - Fault detection
KW - Haar functions
KW - Noise detection
KW - Signal processing
KW - Variance
KW - Wavelets
KW - Wavelets'packets
KW - Engineering
UR - http://www.scopus.com/inward/record.url?scp=84895347837&partnerID=8YFLogxK
M3 - Chapter
AN - SCOPUS:84895347837
SN - 9781613242520
SP - 85
EP - 104
BT - New Developments in Mathematics Research
A2 - Clarke, Natalie L
A2 - Ronson, Alex P
PB - Nova Science Publishers, Inc.
ER -