Mechanisms behind elevational plant species richness patterns revealed by a trait-based approach

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Authors

  • Amanda Ratier Backes
  • Christine Römermann
  • Jake M. Alexander
  • José Ramón Arévalo
  • Petr Keil
  • Miguel Antonio Padrón-Mederos
  • Stefan Trogisch
  • Sylvia Haider

Aims: Elevational patterns of plant species richness may be caused by multiple underlying mechanisms, and the same pattern can be predicted by different mechanisms. Using the steep elevational gradient of Tenerife as a model system, we aimed to test if the application of a trait-based approach can help disentangle the role of potential mechanisms behind local elevational plant species richness patterns. Location: Tenerife, Canary Islands, Spain. Methods: Based on vegetation relevés from natural vegetation and disturbed roadside habitat, along an elevational gradient of 2300 m, we observed a peak of plant species richness in the lowest third of the gradient. We considered three mechanisms potentially shaping this pattern: environmental filtering (temperature and precipitation), effects of area and disturbance. For these mechanisms, we hypothesized a distinct pattern of functional trait–elevation relationships. These were tested with in-situ data of nine functional leaf traits, from which we calculated community-weighted means (CWM) of traits and functional diversity (Rao's Q). Results: While species richness was significantly positively correlated with temperature, area and disturbance, filtering through temperature was the only mechanism for which we could confirm most of our mechanism-specific hypotheses about elevational trait changes: with increasing elevation, CWMs of most traits indicated shifts from acquisitive to conservative growth strategies, and functional diversity decreased. The shift of growth strategies also supported the disturbance effect, as we found overall more acquisitive communities at roadsides compared to natural habitats. Conclusions: Our results indicate that simple correlations between species richness and abiotic variables are not necessarily causal. Additional testing of mechanism-specific hypotheses for elevational patterns of both CWMs and functional diversity can help distinguishing between correlational and mechanistic relationships between species richness and environmental variables. The trait-based framework presented here can be fruitfully applied to better understand species richness patterns in other regions and across other types of environmental gradients.

OriginalspracheEnglisch
Aufsatznummere13171
ZeitschriftJournal of Vegetation Science
Jahrgang34
Ausgabenummer1
ISSN1100-9233
DOIs
PublikationsstatusErschienen - 01.01.2023
Extern publiziertJa

Bibliographische Notiz

Funding Information:
Amanda Ratier Backes, Petr Keil, Christine Römermann, Stefan Trogisch and Sylvia Haider gratefully acknowledge the support of iDiv funded by the German Research Foundation (DFG – FZT 118, 202,548,816). Amanda Ratier Backes, Christine Römermann and Sylvia Haider acknowledge the support from the Federal State of Saxony‐Anhalt (FKZ: I 154).

Publisher Copyright:
© 2022 The Authors. Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.

DOI