Mathematische Modellierung eines Raumes zur Nutzung in einem dynamischen Cyber-Physischen System

Publikation: Bücher und AnthologienMonografienForschung

Authors

Cyber-Physische Systeme (CPS) gewinnen in vielen Bereichen an Bedeutung und sind ein integraler Bestandteil von Industrie 4.0. Die Fähigkeit autonomer Systeme aus der Interpretation der Umgebung Handlungen ableiten zu können, bildet den Kerngedanken eines CPS. Aus diesem Grund wurde ein einheitliches Modell entwickelt, welches den Zustand der Umgebung abbilden und aus dem eine statistische Zustandsvorhersage abgeleitet werden kann, sodass beliebige Anwendungen auf dem Modell aufbauen können. Die notwendige Bedingung zur Erstellung eines Modells, ist die sensorische Erfassung der Umgebung und die Repräsentation in einer Karte. Das entwickelte Modell baut auf einer metrischen Karte auf und erweitert diese um zwei Matrizen, die den Zustand beschreiben. Zuerst wurde dazu ermittelt, welche ZustÄnde eines Raumes erfasst werden müssen, um diesen zu modellieren. Dabei wurde der Ansatz zu Grunde gelegt, dass der Zustand des Raumes durch die Zustände aller sich darin befindlichen Objekte hinreichend bestimmt ist. Als Zustand eines Objektes wurde das Tupel, bestehend aus den Koordinaten, Geschwindigkeitskomponenten und der Orientierung definiert. Zusätzlich wurde jedem dieser Werte eine Unsicherheit zugewiesen. Zur Bestimmung dieses Zustands ist es notwendig, dass Distanzinformationen aus den Sensordaten des Systems ermittelt werden können. Aus diesem Grund wurde auf eine Microsoft Kinect zurückgegriffen, da diese einfach zu integrieren ist und zusätzlich RGB-Daten zur Verfügung stehen und somit mit einem Sensor alle Anforderungen abgedeckt werden können. Das entwickelte Modell beruht auf den zwei entwickelten Matrizen PI und SM. PI, die die Aufenthaltswahrscheinlichkeit eines Objektes beschreibt und SM, die den durchschnittlichen Zustand beschreibt. Beide Matrizen bauen auf einer metrischen Karte auf und geben somit für jeden Knotenpunkt einen bestimmten Wert an. Die Werte von PI berechnen sich durch eine gewichtete Zeitreihenanalyse der Beobachtungen eines Objektes an einem bestimmten Ort (Knotenpunkt). Durch den Vergleich der Werte mit denen der Umgebung, lassen sich daraus konkrete Aufenthaltswahrscheinlichkeiten ableiten. Die Matrix SM gibt durch eine analoge Analyse, den durchschnittlichen Zustand der Objekte an dem entsprechenden Ort an. Da verschiedenartige Objekte unterschiedliche Verhalten aufweisen, ist eine Klassifizierung auf Basis der Beweglichkeit eines Objektes eingeführt worden und für jede Klasse die separate Matrizen PI und SM bestimmt. Somit lassen sich aus den Beobachtungen zuverlässiger Vorhersagen generieren. Die Zustandsvorhersage basiert auf einem mehrstufigen Verfahren. Zuerst wird ein neuer Zustand auf Basis eines generellen Bewegungsmodells ermittelt und mit einer entsprechenden Unsicherheit behaftet. In der Umgebung des neuen Zustands, werden konkrete Aufenthaltswahrscheinlichkeiten aus PI berechnet und anschließend mit dem Zustand und SM verrechnet. Abschließend wird eine Unsicherheit der Vorhersage berechnet. Für längere Vorhersagen wird dieses Verfahren mehrfach wiederholt, es sei denn an einer Stelle wird eine signifikante Änderung des Zustands ermittelt (beispielsweise eine Richtungsänderung). In diesem Fall werden mit Hilfe einer Markov-Kette mehrere mögliche Zustände weiterverfolgt um die Vorhersage zu verbessern. Das entwickelte Modell, mit dem Vorhersagesystem wurde abschließend in Testszenarien mit verschiedenen Objekten getestet. Dabei konnte nachgewiesen werden, dass die Vorhersage innerhalb der Auflösung der metrischen Karte liegt. Somit konnte mit dem Modell eine Grundlage für autonome Systeme geschaffen werden, das in verschiedenen Anwendungen eingesetzt werden kann um ein CPS aufzubauen.
OriginalspracheDeutsch
ErscheinungsortGöttingen
VerlagSierke Verlag
Auflage1
Anzahl der Seiten128
ISBN (Print)978-3-86844-891-7
PublikationsstatusErschienen - 2017

Publikationsreihe

NameSchriftenreihe zur Produkt - und Prozessinnovation
Band9

Bibliographische Notiz

Dissertation, Fakultät Wirtschaftswissenschaften der Leuphana Universität Lüneburg, 2016

Zugehörige Projekte

  • Optimierung der Zusammenarbeit von autonomen logistik-Fahrzeugen in einem autonomen cyber-physischem System.

    Projekt: Forschung

Zuletzt angesehen

Publikationen

  1. Multisensory Design of Retail Environments
  2. Queer Theory After Marriage Equality. Edited collection in the journal "South Atlantic Quarterly"
  3. Foreword
  4. Culture-specific objectives of change communication: An intercultural perspective
  5. German multiple-product, multiple-destination exporters
  6. Notting Hill Gate 4
  7. Interactive Sustainability Reporting
  8. Transformation of Seafood Side-Streams and Residuals into Valuable Products
  9. Abschied von gestern
  10. Erinnern Vergessen.
  11. Rationalität, Naturbeherrschung und Mythos
  12. Diagnose- und Interventionsformen für einen selbständigkeitsorientierten Unterricht am Beispiel Mathematik
  13. Gesetz über die alternative Streitbeilegung in Verbrauchersachen (Verbraucherstreitbeilegungsgesetz - VSBG)
  14. Die Bewertung des Informationssystems einer Unternehmung
  15. Körper und Geschlechtlichkeit
  16. Antibiotics and sweeteners in the aquatic environment
  17. Institutional Logics as orchestras' strategic dilemma
  18. Informationsmanagement in kleinen und mittleren Unternehmen
  19. Alcohol intake leads people to focus on desirability rather than feasibility
  20. Erlebniswertorientierte Markenstrategien
  21. Stephanosporin, a "traceless" precursor of 2-Chloro-4-nitrophenol in the gasteromycete Stephanospora caroticolor
  22. Zur Novellierung des Hamburgischen Informationsfreiheitsgesetzes
  23. Abfallvermeidungsprogramme:
  24. Piotr J. Małysz, Trinity, Freedom, and Love: An Engagement with the Theology of Eberhard Jüngel
  25. Reconceptualising European equality law
  26. Zur Internalisierung von Lebenslangem Lernen an europäischen Hochschulen.
  27. Transcending transmission