Identification of phototransformation products of the antiepileptic drug gabapentin: Biodegradability and initial assessment of toxicity

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Identification of phototransformation products of the antiepileptic drug gabapentin: Biodegradability and initial assessment of toxicity. / Herrmann, Manuel; Menz, Jakob; Olsson, Oliver et al.
in: Water Research, Jahrgang 85, 15.11.2015, S. 11-21.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{45a9a2a5205d42a9a982e8b7018915ee,
title = "Identification of phototransformation products of the antiepileptic drug gabapentin: Biodegradability and initial assessment of toxicity",
abstract = "The anticonvulsant drug Gabapentin (GAB) is used for the treatment of various diseases (e.g. epilepsy, bipolar disorder, neuropathic pain) and is being consumed in high amounts. As GAB is not metabolized and shows a weak elimination in sewage treatment plants (STPs), it has been detected in surface water and even in raw potable water. Moreover, the confirmed teratogenic effects of GAB indicate the need for further investigations regarding options for the elimination of GAB in the water cycle. Little is known about the behavior of GAB during treatment with UV light, which is normally used for the disinfection of potable water and discussed for advanced wastewater treatment. In this study, GAB was exposed to polychromatic UV irradiation at different initial concentrations in aqueous solution. Afterwards the structures of the resulting phototransformation products (PTPs) were identified and elucidated by means of high-resolution mass spectrometry. GAB and photolytic mixtures were submitted to the Closed Bottle Test (CBT; OECD 301 D) to assess biodegradability. Furthermore, the toxicity of GAB and its photolytic mixtures was initially addressed on screening level using a modified luminescent bacteria test (LBT) and the umu-test (ISO/FDIS 13829). Environmentally realistic concentrations of GAB were disclosed by predicting STP influent concentrations (24.3 and 23.2 μg L(-1)). GAB with initial concentration of 100 mg L(-1) was eliminated by 80% after 128 min of direct UV irradiation, but just 9% of non-purgeable organic carbon (NPOC) was removed indicating the formation of dead-end transformation products (TPs). Structures of different PTPs were elucidated and several identical PTPs could also be identified at lower initial treatment concentrations (20 mg L(-1), 5 mg L(-1), 1 mg L(-1) and 0.1 mg L(-1)). GAB was classified as not readily biodegradable. Moreover, photo treatment did not result in better biodegradable PTPs. With increasing UV treatment duration, photolytic mixtures of GAB showed an increased inhibition of both, the bacterial luminescence emission as well as the growth in the modified LBT. In the umu-test no significant induction of the umuC gene as an indicator of genotoxicity was observed. Our results show that UV irradiation of GAB containing water would lead to the formation of recalcitrant PTPs. Considering that GAB was found in raw drinking water, the formation of toxic PTPs during drinking water treatment with UV light might be possible. Therefore, further studies should be conducted regarding the fate and effects on human health and the environment of GAB and the PTPs identified within this study.",
keywords = "Chemistry, Gabapentin, Photodegradation, Biodegradation, Transformation product",
author = "Manuel Herrmann and Jakob Menz and Oliver Olsson and Klaus K{\"u}mmerer",
note = "Copyright {\textcopyright} 2015 Elsevier Ltd. All rights reserved.",
year = "2015",
month = nov,
day = "15",
doi = "10.1016/j.watres.2015.08.004",
language = "English",
volume = "85",
pages = "11--21",
journal = "Water Research",
issn = "0043-1354",
publisher = "IWA Publishing",

}

RIS

TY - JOUR

T1 - Identification of phototransformation products of the antiepileptic drug gabapentin

T2 - Biodegradability and initial assessment of toxicity

AU - Herrmann, Manuel

AU - Menz, Jakob

AU - Olsson, Oliver

AU - Kümmerer, Klaus

N1 - Copyright © 2015 Elsevier Ltd. All rights reserved.

PY - 2015/11/15

Y1 - 2015/11/15

N2 - The anticonvulsant drug Gabapentin (GAB) is used for the treatment of various diseases (e.g. epilepsy, bipolar disorder, neuropathic pain) and is being consumed in high amounts. As GAB is not metabolized and shows a weak elimination in sewage treatment plants (STPs), it has been detected in surface water and even in raw potable water. Moreover, the confirmed teratogenic effects of GAB indicate the need for further investigations regarding options for the elimination of GAB in the water cycle. Little is known about the behavior of GAB during treatment with UV light, which is normally used for the disinfection of potable water and discussed for advanced wastewater treatment. In this study, GAB was exposed to polychromatic UV irradiation at different initial concentrations in aqueous solution. Afterwards the structures of the resulting phototransformation products (PTPs) were identified and elucidated by means of high-resolution mass spectrometry. GAB and photolytic mixtures were submitted to the Closed Bottle Test (CBT; OECD 301 D) to assess biodegradability. Furthermore, the toxicity of GAB and its photolytic mixtures was initially addressed on screening level using a modified luminescent bacteria test (LBT) and the umu-test (ISO/FDIS 13829). Environmentally realistic concentrations of GAB were disclosed by predicting STP influent concentrations (24.3 and 23.2 μg L(-1)). GAB with initial concentration of 100 mg L(-1) was eliminated by 80% after 128 min of direct UV irradiation, but just 9% of non-purgeable organic carbon (NPOC) was removed indicating the formation of dead-end transformation products (TPs). Structures of different PTPs were elucidated and several identical PTPs could also be identified at lower initial treatment concentrations (20 mg L(-1), 5 mg L(-1), 1 mg L(-1) and 0.1 mg L(-1)). GAB was classified as not readily biodegradable. Moreover, photo treatment did not result in better biodegradable PTPs. With increasing UV treatment duration, photolytic mixtures of GAB showed an increased inhibition of both, the bacterial luminescence emission as well as the growth in the modified LBT. In the umu-test no significant induction of the umuC gene as an indicator of genotoxicity was observed. Our results show that UV irradiation of GAB containing water would lead to the formation of recalcitrant PTPs. Considering that GAB was found in raw drinking water, the formation of toxic PTPs during drinking water treatment with UV light might be possible. Therefore, further studies should be conducted regarding the fate and effects on human health and the environment of GAB and the PTPs identified within this study.

AB - The anticonvulsant drug Gabapentin (GAB) is used for the treatment of various diseases (e.g. epilepsy, bipolar disorder, neuropathic pain) and is being consumed in high amounts. As GAB is not metabolized and shows a weak elimination in sewage treatment plants (STPs), it has been detected in surface water and even in raw potable water. Moreover, the confirmed teratogenic effects of GAB indicate the need for further investigations regarding options for the elimination of GAB in the water cycle. Little is known about the behavior of GAB during treatment with UV light, which is normally used for the disinfection of potable water and discussed for advanced wastewater treatment. In this study, GAB was exposed to polychromatic UV irradiation at different initial concentrations in aqueous solution. Afterwards the structures of the resulting phototransformation products (PTPs) were identified and elucidated by means of high-resolution mass spectrometry. GAB and photolytic mixtures were submitted to the Closed Bottle Test (CBT; OECD 301 D) to assess biodegradability. Furthermore, the toxicity of GAB and its photolytic mixtures was initially addressed on screening level using a modified luminescent bacteria test (LBT) and the umu-test (ISO/FDIS 13829). Environmentally realistic concentrations of GAB were disclosed by predicting STP influent concentrations (24.3 and 23.2 μg L(-1)). GAB with initial concentration of 100 mg L(-1) was eliminated by 80% after 128 min of direct UV irradiation, but just 9% of non-purgeable organic carbon (NPOC) was removed indicating the formation of dead-end transformation products (TPs). Structures of different PTPs were elucidated and several identical PTPs could also be identified at lower initial treatment concentrations (20 mg L(-1), 5 mg L(-1), 1 mg L(-1) and 0.1 mg L(-1)). GAB was classified as not readily biodegradable. Moreover, photo treatment did not result in better biodegradable PTPs. With increasing UV treatment duration, photolytic mixtures of GAB showed an increased inhibition of both, the bacterial luminescence emission as well as the growth in the modified LBT. In the umu-test no significant induction of the umuC gene as an indicator of genotoxicity was observed. Our results show that UV irradiation of GAB containing water would lead to the formation of recalcitrant PTPs. Considering that GAB was found in raw drinking water, the formation of toxic PTPs during drinking water treatment with UV light might be possible. Therefore, further studies should be conducted regarding the fate and effects on human health and the environment of GAB and the PTPs identified within this study.

KW - Chemistry

KW - Gabapentin

KW - Photodegradation

KW - Biodegradation

KW - Transformation product

UR - http://www.scopus.com/inward/record.url?scp=84939504132&partnerID=8YFLogxK

U2 - 10.1016/j.watres.2015.08.004

DO - 10.1016/j.watres.2015.08.004

M3 - Journal articles

C2 - 26281960

VL - 85

SP - 11

EP - 21

JO - Water Research

JF - Water Research

SN - 0043-1354

ER -

DOI

Zuletzt angesehen