Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface. / Kunkelmoor, Jörg; Mercorelli, Paolo.
Advanced, Contemporary Control : Proceedings of KKA 2020—The 20th Polish Control Conference, Łódź, Poland, 2020. Hrsg. / Andrzej Bartoszewicz; Jacek Kabziński; Janusz Kacprzyk. Band 1 Cham: Springer, 2020. S. 197-206 (Advances in Intelligent Systems and Computing; Band 1196).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Kunkelmoor, J & Mercorelli, P 2020, Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface. in A Bartoszewicz, J Kabziński & J Kacprzyk (Hrsg.), Advanced, Contemporary Control : Proceedings of KKA 2020—The 20th Polish Control Conference, Łódź, Poland, 2020. Bd. 1, Advances in Intelligent Systems and Computing, Bd. 1196, Springer, Cham, S. 197-206, 20th Polish Control Conference, PCC 2020, Lodz, Polen, 22.06.20. https://doi.org/10.1007/978-3-030-50936-1_17

APA

Kunkelmoor, J., & Mercorelli, P. (2020). Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface. In A. Bartoszewicz, J. Kabziński, & J. Kacprzyk (Hrsg.), Advanced, Contemporary Control : Proceedings of KKA 2020—The 20th Polish Control Conference, Łódź, Poland, 2020 (Band 1, S. 197-206). (Advances in Intelligent Systems and Computing; Band 1196). Springer. https://doi.org/10.1007/978-3-030-50936-1_17

Vancouver

Kunkelmoor J, Mercorelli P. Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface. in Bartoszewicz A, Kabziński J, Kacprzyk J, Hrsg., Advanced, Contemporary Control : Proceedings of KKA 2020—The 20th Polish Control Conference, Łódź, Poland, 2020. Band 1. Cham: Springer. 2020. S. 197-206. (Advances in Intelligent Systems and Computing). doi: 10.1007/978-3-030-50936-1_17

Bibtex

@inbook{af860f7638174c15bd1edb29bdc57ce2,
title = "Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface",
abstract = "Due to an increasing variety of tasks in production systems, the programming of robots becomes more complex. The aim of this work is, therefore, to simplify the work involved in programming of different contours as much as possible. Instead of specifying individual points of a contour in code, only one start and one end position are given. The movement between the two points is changed in real time by a robust control scheme, thus simplifying the programming effort for different contours. In this work, the robot is considered as a black box system and the approach to control consists only of considering the error of position and velocity without model. In the presented case, the development of the controller has shown that an Integral Sliding Mode Control (ISMC) strategy does not provide the desired control quality because of the presence of unavoidable saturating actuators in robots. Furthermore, a better result could be achieved with a Sliding Mode Control (SMC) approach that switches between two predefined surfaces. With this approach, good dynamic performances are obtained, in particular, in terms of overshoot which proves to be drastically reduced. Validations of the proposed method are obtained using real measurements realized on an industrial robot.",
keywords = "Applications, Robots, Sliding Mode Control, Trajectory control",
author = "J{\"o}rg Kunkelmoor and Paolo Mercorelli",
year = "2020",
month = jan,
day = "1",
doi = "10.1007/978-3-030-50936-1_17",
language = "English",
isbn = "978-3-030-50935-4",
volume = "1",
series = "Advances in Intelligent Systems and Computing",
publisher = "Springer",
pages = "197--206",
editor = "Andrzej Bartoszewicz and Jacek Kabzi{\'n}ski and Janusz Kacprzyk",
booktitle = "Advanced, Contemporary Control",
address = "Germany",
note = "20th Polish Control Conference, PCC 2020, PCC2020 ; Conference date: 22-06-2020 Through 24-06-2020",
url = "https://www.kka.p.lodz.pl/index_e.php",

}

RIS

TY - CHAP

T1 - Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface

AU - Kunkelmoor, Jörg

AU - Mercorelli, Paolo

N1 - Conference code: 20

PY - 2020/1/1

Y1 - 2020/1/1

N2 - Due to an increasing variety of tasks in production systems, the programming of robots becomes more complex. The aim of this work is, therefore, to simplify the work involved in programming of different contours as much as possible. Instead of specifying individual points of a contour in code, only one start and one end position are given. The movement between the two points is changed in real time by a robust control scheme, thus simplifying the programming effort for different contours. In this work, the robot is considered as a black box system and the approach to control consists only of considering the error of position and velocity without model. In the presented case, the development of the controller has shown that an Integral Sliding Mode Control (ISMC) strategy does not provide the desired control quality because of the presence of unavoidable saturating actuators in robots. Furthermore, a better result could be achieved with a Sliding Mode Control (SMC) approach that switches between two predefined surfaces. With this approach, good dynamic performances are obtained, in particular, in terms of overshoot which proves to be drastically reduced. Validations of the proposed method are obtained using real measurements realized on an industrial robot.

AB - Due to an increasing variety of tasks in production systems, the programming of robots becomes more complex. The aim of this work is, therefore, to simplify the work involved in programming of different contours as much as possible. Instead of specifying individual points of a contour in code, only one start and one end position are given. The movement between the two points is changed in real time by a robust control scheme, thus simplifying the programming effort for different contours. In this work, the robot is considered as a black box system and the approach to control consists only of considering the error of position and velocity without model. In the presented case, the development of the controller has shown that an Integral Sliding Mode Control (ISMC) strategy does not provide the desired control quality because of the presence of unavoidable saturating actuators in robots. Furthermore, a better result could be achieved with a Sliding Mode Control (SMC) approach that switches between two predefined surfaces. With this approach, good dynamic performances are obtained, in particular, in terms of overshoot which proves to be drastically reduced. Validations of the proposed method are obtained using real measurements realized on an industrial robot.

KW - Applications

KW - Robots

KW - Sliding Mode Control

KW - Trajectory control

UR - http://www.scopus.com/inward/record.url?scp=85088210624&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-50936-1_17

DO - 10.1007/978-3-030-50936-1_17

M3 - Article in conference proceedings

AN - SCOPUS:85088210624

SN - 978-3-030-50935-4

VL - 1

T3 - Advances in Intelligent Systems and Computing

SP - 197

EP - 206

BT - Advanced, Contemporary Control

A2 - Bartoszewicz, Andrzej

A2 - Kabziński, Jacek

A2 - Kacprzyk, Janusz

PB - Springer

CY - Cham

T2 - 20th Polish Control Conference, PCC 2020

Y2 - 22 June 2020 through 24 June 2020

ER -

DOI