Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment

Research output: Contributions to collected editions/worksPublished abstract in conference proceedingsResearchpeer-review

Standard

Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment. / Vollert, Dieter; Gassmann, Matthias; Olsson, Oliver et al.
Proceedings from the 19th EGU General Assembly, EGU2017. Vol. 19 Copernicus Publications, 2017. p. 15167 (Geophysical research abstracts; Vol. 19).

Research output: Contributions to collected editions/worksPublished abstract in conference proceedingsResearchpeer-review

Harvard

Vollert, D, Gassmann, M, Olsson, O & Kümmerer, K 2017, Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment. in Proceedings from the 19th EGU General Assembly, EGU2017. vol. 19, Geophysical research abstracts, vol. 19, Copernicus Publications, pp. 15167, European Geosciences Union General Assembly - EGU 2017, Wien, Austria, 23.04.17. <https://meetingorganizer.copernicus.org/EGU2017/EGU2017-15167.pdf>

APA

Vollert, D., Gassmann, M., Olsson, O., & Kümmerer, K. (2017). Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment. In Proceedings from the 19th EGU General Assembly, EGU2017 (Vol. 19, pp. 15167). (Geophysical research abstracts; Vol. 19). Copernicus Publications. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-15167.pdf

Vancouver

Vollert D, Gassmann M, Olsson O, Kümmerer K. Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment. In Proceedings from the 19th EGU General Assembly, EGU2017. Vol. 19. Copernicus Publications. 2017. p. 15167. (Geophysical research abstracts).

Bibtex

@inbook{506f948bfc6a461b9c8057631754d10f,
title = "Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment",
abstract = "In the viniculture fungicides are commonly applied foliar on the plant surface, resulting in high concentrations in runoff water. The fungicide Boscalid occurred frequently and in high concentrations in runoff water in the Loechernbach catchment, a 180 ha vineyard catchment in south-west Germany, during rainfall-runoff events in 2016. The catchment is characterized by a typical terraces structure and the connection of a dense road network. The washing off from drift-depositions on the streets is expected to be a major pathway for pesticides. The main objective of this study was the provision of a catchment model to simulate the transport and transformation processes of Boscalid. Based on this model, source areas of Boscalid residue pollution and its export pathways will be identified and provide urgently needed information for the development of water pollution control strategies. The distributed, process-based, reactive transport catchment model ZIN-AgriTra was used for the evaluation of the pesticide mobilization and the export processes. The hydrological model was successfully calibrated for a 6-month high-resolution time series of discharge data. Pesticide modelling was calibrated for single rainfall events after Boscalid application. Additionally, the transformation product 4-Chlorobenzoic acid has been simulated using literature substance parameters, in order to gain information about anticipated environmental concentrations. The pathways for the discharge of Boscalid were characterized and the streets were confirmed as major pathway for the pesticide discharge in the catchment. The main Boscalid loss occured during the first flush after a storm event containing concentrations up to 10 µg/l. The results show that storage on surfaces without sorption contributes significantly to the export of pesticides through the first flush. Therefore, the mobilization process affects a combination of both sorptive (e.g. at the soil) and non-sorptive (e.g. on the surface) storages at the roads. Furthermore, measurements and simulation results show that there are background pesticide concentrations, an order of magnitude lower than the first flush concentration, for the whole simulation period. Additionally, almost half of the applied Boscalid still remains as residue in the soil at the end of the simulated 6-month period, because of slow degradation rates of Boscalid. The transformation product 4-Chlorobenzoic acid was simulated to have concentrations in the range of 0.1 µg/l. The model assumes that subsurface flow is the major loss pathway for this substance. Concluding, the introduced catchment model is an applicable tool to simulate the individual processes of the Boscalid fate in the vineyard catchment. It was confirmed that roads receiving pesticide drift are the major loss areas of Boscalid in the Loechernbach catchment. ",
keywords = "Chemistry",
author = "Dieter Vollert and Matthias Gassmann and Oliver Olsson and Klaus K{\"u}mmerer",
year = "2017",
month = apr,
language = "English",
volume = "19",
series = "Geophysical research abstracts",
publisher = "Copernicus Publications",
pages = "15167",
booktitle = "Proceedings from the 19th EGU General Assembly, EGU2017",
address = "Germany",
note = "European Geosciences Union General Assembly - EGU 2017, EGU 2017 ; Conference date: 23-04-2017 Through 28-04-2017",
url = "https://www.egu2017.eu/",

}

RIS

TY - CHAP

T1 - Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment

AU - Vollert, Dieter

AU - Gassmann, Matthias

AU - Olsson, Oliver

AU - Kümmerer, Klaus

N1 - Conference code: 19

PY - 2017/4

Y1 - 2017/4

N2 - In the viniculture fungicides are commonly applied foliar on the plant surface, resulting in high concentrations in runoff water. The fungicide Boscalid occurred frequently and in high concentrations in runoff water in the Loechernbach catchment, a 180 ha vineyard catchment in south-west Germany, during rainfall-runoff events in 2016. The catchment is characterized by a typical terraces structure and the connection of a dense road network. The washing off from drift-depositions on the streets is expected to be a major pathway for pesticides. The main objective of this study was the provision of a catchment model to simulate the transport and transformation processes of Boscalid. Based on this model, source areas of Boscalid residue pollution and its export pathways will be identified and provide urgently needed information for the development of water pollution control strategies. The distributed, process-based, reactive transport catchment model ZIN-AgriTra was used for the evaluation of the pesticide mobilization and the export processes. The hydrological model was successfully calibrated for a 6-month high-resolution time series of discharge data. Pesticide modelling was calibrated for single rainfall events after Boscalid application. Additionally, the transformation product 4-Chlorobenzoic acid has been simulated using literature substance parameters, in order to gain information about anticipated environmental concentrations. The pathways for the discharge of Boscalid were characterized and the streets were confirmed as major pathway for the pesticide discharge in the catchment. The main Boscalid loss occured during the first flush after a storm event containing concentrations up to 10 µg/l. The results show that storage on surfaces without sorption contributes significantly to the export of pesticides through the first flush. Therefore, the mobilization process affects a combination of both sorptive (e.g. at the soil) and non-sorptive (e.g. on the surface) storages at the roads. Furthermore, measurements and simulation results show that there are background pesticide concentrations, an order of magnitude lower than the first flush concentration, for the whole simulation period. Additionally, almost half of the applied Boscalid still remains as residue in the soil at the end of the simulated 6-month period, because of slow degradation rates of Boscalid. The transformation product 4-Chlorobenzoic acid was simulated to have concentrations in the range of 0.1 µg/l. The model assumes that subsurface flow is the major loss pathway for this substance. Concluding, the introduced catchment model is an applicable tool to simulate the individual processes of the Boscalid fate in the vineyard catchment. It was confirmed that roads receiving pesticide drift are the major loss areas of Boscalid in the Loechernbach catchment.

AB - In the viniculture fungicides are commonly applied foliar on the plant surface, resulting in high concentrations in runoff water. The fungicide Boscalid occurred frequently and in high concentrations in runoff water in the Loechernbach catchment, a 180 ha vineyard catchment in south-west Germany, during rainfall-runoff events in 2016. The catchment is characterized by a typical terraces structure and the connection of a dense road network. The washing off from drift-depositions on the streets is expected to be a major pathway for pesticides. The main objective of this study was the provision of a catchment model to simulate the transport and transformation processes of Boscalid. Based on this model, source areas of Boscalid residue pollution and its export pathways will be identified and provide urgently needed information for the development of water pollution control strategies. The distributed, process-based, reactive transport catchment model ZIN-AgriTra was used for the evaluation of the pesticide mobilization and the export processes. The hydrological model was successfully calibrated for a 6-month high-resolution time series of discharge data. Pesticide modelling was calibrated for single rainfall events after Boscalid application. Additionally, the transformation product 4-Chlorobenzoic acid has been simulated using literature substance parameters, in order to gain information about anticipated environmental concentrations. The pathways for the discharge of Boscalid were characterized and the streets were confirmed as major pathway for the pesticide discharge in the catchment. The main Boscalid loss occured during the first flush after a storm event containing concentrations up to 10 µg/l. The results show that storage on surfaces without sorption contributes significantly to the export of pesticides through the first flush. Therefore, the mobilization process affects a combination of both sorptive (e.g. at the soil) and non-sorptive (e.g. on the surface) storages at the roads. Furthermore, measurements and simulation results show that there are background pesticide concentrations, an order of magnitude lower than the first flush concentration, for the whole simulation period. Additionally, almost half of the applied Boscalid still remains as residue in the soil at the end of the simulated 6-month period, because of slow degradation rates of Boscalid. The transformation product 4-Chlorobenzoic acid was simulated to have concentrations in the range of 0.1 µg/l. The model assumes that subsurface flow is the major loss pathway for this substance. Concluding, the introduced catchment model is an applicable tool to simulate the individual processes of the Boscalid fate in the vineyard catchment. It was confirmed that roads receiving pesticide drift are the major loss areas of Boscalid in the Loechernbach catchment.

KW - Chemistry

UR - https://meetingorganizer.copernicus.org/EGU2017/EGU2017-15167.pdf

M3 - Published abstract in conference proceedings

VL - 19

T3 - Geophysical research abstracts

SP - 15167

BT - Proceedings from the 19th EGU General Assembly, EGU2017

PB - Copernicus Publications

T2 - European Geosciences Union General Assembly - EGU 2017

Y2 - 23 April 2017 through 28 April 2017

ER -

Recently viewed

Researchers

  1. Steffen Beiten

Publications

  1. Patients' and Physicians' Perceptions of Medical Services in Germany
  2. Partizipative Führung an Schulen in Hamburg
  3. Szenen des Lernens
  4. Molecular analyses and species distribution models indicate cryptic northern mountain refugia for a forestdwelling ground beetle
  5. Corrigendum to: Pathways to Implementation: Evidence on How Participation in Environmental Governance Impacts on Environmental Outcomes
  6. Action tendencies and characteristics of environmental risks
  7. It pays to be active on many foreign markets
  8. Didactics of Mathematics in Higher Education as a Scientific Discipline - Conference Proceedings
  9. Cost of illness for bipolar disorder
  10. Can Becoming a Leader Change Your Personality?
  11. The Principles of Public International Law and their Influence on Space Contracts
  12. Personality in personnel selection and assessment
  13. Prolog - Raumbezogene Qualitative Sozialforschung
  14. Agentic and communal interaction goals in conflictual intergroup relations
  15. The attenuating effect of mortality salience on dishonest behavior
  16. Where you search is what you get
  17. Das „Leben“ in biophänomenologischer Perspektive
  18. Weltorientierung fängt in der Kita an!
  19. Corporate social responsibility (CSR) and earnings management
  20. Jungfräuliche Membranen
  21. Gender makes the difference
  22. Cross-National Complementarity of Technology Push, Demand Pull, and Manufacturing Push Policies
  23. Public Value
  24. Comparative Perspectives in Sustainable and Responsible Business
  25. Leichte Länge, schweres Gewicht
  26. The Sound of Skateboarding
  27. Karl Mays "El Sendador"
  28. Non-native tree species (Pseudotsuga menziesii) strongly decreases predator biomass and abundance in mixed-species plantations of a tree diversity experiment
  29. What is the Problem of Gender Inequality Represented to be in Inter-National Development Policy in Burkina Faso?
  30. Freie Berufe im Wandel der Arbeitsmärkte
  31. Increasing the accuracy and efficiency of wildlife census with unmanned aerial vehicles
  32. Valuing electronic devices? User narratives and their role for durability