Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic. / Ubl, Sandy; Scheringer, Martin; Stohl, Andreas et al.
In: Atmospheric Environment, Vol. 62, 12.2012, p. 391-399.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Ubl S, Scheringer M, Stohl A, Burkhart J, Hungerbühler K. Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic. Atmospheric Environment. 2012 Dec;62:391-399. doi: 10.1016/j.atmosenv.2012.07.061

Bibtex

@article{d025a0e8bc3e46f19741142ae42de76b,
title = "Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic",
abstract = "We investigate the source regions of the three polychlorinated biphenyl congeners (PCBs) 28, 101, and 180 measured at the Arctic stations Alert and Zeppelin, and at Birkenes, which is located in southern Norway. Although the Arctic is remote from the main use areas of these chemicals, PCBs have been found in Arctic air, seawater and biota, which has caused concerns for human and environmental health. We used 20-day backward calculations of the Lagrangian Particle Dispersion Model FLEXPART to identify the origin of air masses associated with the 20% highest and lowest measured PCB concentrations. At Birkenes, high concentrations are clearly associated with air masses arriving from known source regions (primarily in Europe and Russia), whereas low concentrations are correlated with atmospheric transport from regions with low primary emissions. At Zeppelin, the influence from known source regions is also enhanced when high PCB-28 and PCB-101 concentrations were measured. At Alert, in contrast, there is no clear link between high/low PCB concentrations and atmospheric transport from source/non-source regions. Additionally, we combined the atmospheric transport patterns with PCB emission data to identify important source regions and their seasonal variability. For the Arctic stations, Western Russia is the dominant source region for PCB-28 and PCB-101. Central Europe is the most important source region for PCB-180, but sources in the US contribute up to 15% to PCB-180 measured at Alert.",
keywords = "Chemistry, Arctic, FLEXPART, Long-range transport potential, PCBs, Transport modeling",
author = "Sandy Ubl and Martin Scheringer and Andreas Stohl and John Burkhart and Konrad Hungerb{\"u}hler",
year = "2012",
month = dec,
doi = "10.1016/j.atmosenv.2012.07.061",
language = "English",
volume = "62",
pages = "391--399",
journal = "Atmospheric Environment",
issn = "1352-2310",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic

AU - Ubl, Sandy

AU - Scheringer, Martin

AU - Stohl, Andreas

AU - Burkhart, John

AU - Hungerbühler, Konrad

PY - 2012/12

Y1 - 2012/12

N2 - We investigate the source regions of the three polychlorinated biphenyl congeners (PCBs) 28, 101, and 180 measured at the Arctic stations Alert and Zeppelin, and at Birkenes, which is located in southern Norway. Although the Arctic is remote from the main use areas of these chemicals, PCBs have been found in Arctic air, seawater and biota, which has caused concerns for human and environmental health. We used 20-day backward calculations of the Lagrangian Particle Dispersion Model FLEXPART to identify the origin of air masses associated with the 20% highest and lowest measured PCB concentrations. At Birkenes, high concentrations are clearly associated with air masses arriving from known source regions (primarily in Europe and Russia), whereas low concentrations are correlated with atmospheric transport from regions with low primary emissions. At Zeppelin, the influence from known source regions is also enhanced when high PCB-28 and PCB-101 concentrations were measured. At Alert, in contrast, there is no clear link between high/low PCB concentrations and atmospheric transport from source/non-source regions. Additionally, we combined the atmospheric transport patterns with PCB emission data to identify important source regions and their seasonal variability. For the Arctic stations, Western Russia is the dominant source region for PCB-28 and PCB-101. Central Europe is the most important source region for PCB-180, but sources in the US contribute up to 15% to PCB-180 measured at Alert.

AB - We investigate the source regions of the three polychlorinated biphenyl congeners (PCBs) 28, 101, and 180 measured at the Arctic stations Alert and Zeppelin, and at Birkenes, which is located in southern Norway. Although the Arctic is remote from the main use areas of these chemicals, PCBs have been found in Arctic air, seawater and biota, which has caused concerns for human and environmental health. We used 20-day backward calculations of the Lagrangian Particle Dispersion Model FLEXPART to identify the origin of air masses associated with the 20% highest and lowest measured PCB concentrations. At Birkenes, high concentrations are clearly associated with air masses arriving from known source regions (primarily in Europe and Russia), whereas low concentrations are correlated with atmospheric transport from regions with low primary emissions. At Zeppelin, the influence from known source regions is also enhanced when high PCB-28 and PCB-101 concentrations were measured. At Alert, in contrast, there is no clear link between high/low PCB concentrations and atmospheric transport from source/non-source regions. Additionally, we combined the atmospheric transport patterns with PCB emission data to identify important source regions and their seasonal variability. For the Arctic stations, Western Russia is the dominant source region for PCB-28 and PCB-101. Central Europe is the most important source region for PCB-180, but sources in the US contribute up to 15% to PCB-180 measured at Alert.

KW - Chemistry

KW - Arctic

KW - FLEXPART

KW - Long-range transport potential

KW - PCBs

KW - Transport modeling

UR - http://www.scopus.com/inward/record.url?scp=84866524353&partnerID=8YFLogxK

U2 - 10.1016/j.atmosenv.2012.07.061

DO - 10.1016/j.atmosenv.2012.07.061

M3 - Journal articles

VL - 62

SP - 391

EP - 399

JO - Atmospheric Environment

JF - Atmospheric Environment

SN - 1352-2310

ER -

Recently viewed

Publications

  1. Institutional ownership, environmental, social, and governance performance and disclosure
  2. A Sensitive Microsystem as Biosensor for Cell Growth Monitoring and Antibiotic Testing
  3. A sensitive microsystem as biosensor for cell growth monitoring and antibiotic testing
  4. Standardized Tests Fail to Assess the Effects of Antibiotics on Environmental Bacteria
  5. Gezähmtes Naturkind und dankbarer Sklave. Figurenstereotypen in den Harry Potter-Romanen.
  6. Vertrag zur Gründung der Europäischen Gemeinschaft (EGV) : Artikel 24 [Freier Warenverkehr]
  7. Vertrag über die Europäische Union (EUV) : Artikel 27d [Unterrichtung des EP und des Rates]
  8. Is peoples’ belief in a just world associated with (dis)honesty in romantic relationships?
  9. Effects of prescribed burning on plant available nutrients in dry heathland ecosystems
  10. Increasing the accuracy and efficiency of wildlife census with unmanned aerial vehicles
  11. Elution of monomers from three different bonding systems and their antibacterial effect
  12. Vertrag über die Europäische Union (EUV) : Artikel 17 [Sicherheits- und Verteidigungspolitik]
  13. A PHENOMENOGRAPHICAL STUDY OF CHILDRENS’ SPATIAL THOUGHT WHILE USING MAPS IN REAL SPACES
  14. Kompetenzorientierung in der Ausbildung von Grundschullehrerinnen und Grundschullehrern
  15. Targeted metabolomics of pellicle and saliva in children with different caries activity
  16. Rethinking art's relation to its social context: the example of the Artist Placement Group
  17. Abiotic and biotic degradation of five aromatic organosilicon compounds in aqueous media
  18. Weitergehende Prozessbewertung mittels Non-Target-Screening bei der Landeswasserversorgung