Parametric finite element model and mechanical characterisation of electrospun materials for biomedical applications

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Parametric finite element model and mechanical characterisation of electrospun materials for biomedical applications. / Polak-Kraśna, Katarzyna; Mazgajczyk, Emilia; Heikkilä, Pirjo et al.
In: Materials, Vol. 14, No. 2, 278, 07.01.2021, p. 1-15.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Polak-Kraśna K, Mazgajczyk E, Heikkilä P, Georgiadis A. Parametric finite element model and mechanical characterisation of electrospun materials for biomedical applications. Materials. 2021 Jan 7;14(2):1-15. 278. doi: 10.3390/ma14020278

Bibtex

@article{7fe7445742e84ee0afd0d6b8ab58c433,
title = "Parametric finite element model and mechanical characterisation of electrospun materials for biomedical applications",
abstract = "Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical properties of the substrates need to be carefully optimised to mimic cues used by the extracellular matrix to guide cells{\textquoteright} behaviour and improve existing scaffolds. Optimisation of these parameters is enabled by using the finite element model of electrospun structures proposed in this study. First, a fully parametric three-dimensional microscopic model of electrospun material with a random fibrous network was developed. Experimental results were obtained by testing electrospun poly(ethylene) oxide materials. Parameters of single fibres were determined by atomic force microscopy nanoindentations and used as input data for the model. The validation was performed by comparing model output data with tensile test results obtained for electrospun mats. We performed extensive analysis of model parameters correlations to understand the crucial factors and enable extrapolation of a simplified model. We found good agreement between the simulation and the experimental data. The proposed model is a potent tool in the optimisation of electrospun structures and scaffolds for enhanced regenerative therapies.",
keywords = "Electrospinning, FE, Modelling, Nonwoven, Poly(ethylene oxide) (PEO), Tensile testing, Engineering",
author = "Katarzyna Polak-Kra{\'s}na and Emilia Mazgajczyk and Pirjo Heikkil{\"a} and Anthimos Georgiadis",
note = "Funding Information: Short Term Scientific Mission was funded by European Commission via FP7 COST Action 1206.I would like to acknowledge COST Action 1206 ?Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications? for allowing me to realize validation part of this work at VTT Technical Research Centre of Finland Ltd.; and VTT for hosting this Short Term Scientific Mission. Publisher Copyright: {\textcopyright} 2021 by the authors. Licensee MDPI, Basel, Switzerland.",
year = "2021",
month = jan,
day = "7",
doi = "10.3390/ma14020278",
language = "English",
volume = "14",
pages = "1--15",
journal = "Materials",
issn = "1996-1944",
publisher = "MDPI AG",
number = "2",

}

RIS

TY - JOUR

T1 - Parametric finite element model and mechanical characterisation of electrospun materials for biomedical applications

AU - Polak-Kraśna, Katarzyna

AU - Mazgajczyk, Emilia

AU - Heikkilä, Pirjo

AU - Georgiadis, Anthimos

N1 - Funding Information: Short Term Scientific Mission was funded by European Commission via FP7 COST Action 1206.I would like to acknowledge COST Action 1206 ?Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications? for allowing me to realize validation part of this work at VTT Technical Research Centre of Finland Ltd.; and VTT for hosting this Short Term Scientific Mission. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

PY - 2021/1/7

Y1 - 2021/1/7

N2 - Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical properties of the substrates need to be carefully optimised to mimic cues used by the extracellular matrix to guide cells’ behaviour and improve existing scaffolds. Optimisation of these parameters is enabled by using the finite element model of electrospun structures proposed in this study. First, a fully parametric three-dimensional microscopic model of electrospun material with a random fibrous network was developed. Experimental results were obtained by testing electrospun poly(ethylene) oxide materials. Parameters of single fibres were determined by atomic force microscopy nanoindentations and used as input data for the model. The validation was performed by comparing model output data with tensile test results obtained for electrospun mats. We performed extensive analysis of model parameters correlations to understand the crucial factors and enable extrapolation of a simplified model. We found good agreement between the simulation and the experimental data. The proposed model is a potent tool in the optimisation of electrospun structures and scaffolds for enhanced regenerative therapies.

AB - Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical properties of the substrates need to be carefully optimised to mimic cues used by the extracellular matrix to guide cells’ behaviour and improve existing scaffolds. Optimisation of these parameters is enabled by using the finite element model of electrospun structures proposed in this study. First, a fully parametric three-dimensional microscopic model of electrospun material with a random fibrous network was developed. Experimental results were obtained by testing electrospun poly(ethylene) oxide materials. Parameters of single fibres were determined by atomic force microscopy nanoindentations and used as input data for the model. The validation was performed by comparing model output data with tensile test results obtained for electrospun mats. We performed extensive analysis of model parameters correlations to understand the crucial factors and enable extrapolation of a simplified model. We found good agreement between the simulation and the experimental data. The proposed model is a potent tool in the optimisation of electrospun structures and scaffolds for enhanced regenerative therapies.

KW - Electrospinning

KW - FE

KW - Modelling

KW - Nonwoven

KW - Poly(ethylene oxide) (PEO)

KW - Tensile testing

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85099254790&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/ea3bedd8-5673-3c59-9c86-6f2651b73e87/

U2 - 10.3390/ma14020278

DO - 10.3390/ma14020278

M3 - Journal articles

C2 - 33430450

AN - SCOPUS:85099254790

VL - 14

SP - 1

EP - 15

JO - Materials

JF - Materials

SN - 1996-1944

IS - 2

M1 - 278

ER -

Documents

DOI

Recently viewed

Publications

  1. Explaining General and Specific Factors in Longitudinal, Multimethod, and Bifactor Models
  2. Timing matters: Distinct effects of nitrogen and phosphorus fertilizer application timing on root system architecture responses
  3. Structural Synthesis of Parallel Robots with Unguided Linear Actuators
  4. Neural relational inference for disaster multimedia retrieval
  5. A Two-Stage Sliding-Mode High-Gain Observer to Reduce Uncertainties and Disturbances Effects for Sensorless Control in Automotive Applications
  6. Deeper Insights into Different Consumer Perceptions of CSR Communication
  7. Development and comparison of processing maps of Mg-3Sn-1Ca alloy from data obtained in tension versus compression
  8. The Replication Database: Documenting the Replicability of Psychological Science
  9. Systematic feature evaluation for gene name recognition
  10. Determinants of union membership in 18 EU countries
  11. How Differences in Ratings of Odors and Odor Labels Are Associated with Identification Mechanisms
  12. Determining Lot Sizes in Production Areas
  13. A high-resolution approach for the spatiotemporal analysis of forest canopy space using terrestrial laser scanning data
  14. Towards a Comprehensive Framework for Environmental Management Accounting
  15. The buffering effect of selection, optimization, and compensation strategy use on the relationship between problem solving demands and occupational well-being
  16. Effects of accuracy feedback on fractal characteristics of time estimation
  17. TANGO: A reliable, open-source, browser-based task to assess individual differences in gaze understanding in 3 to 5-year-old children and adults
  18. Efficacy of an internet and app-based gratitude intervention in reducing repetitive negative thinking and mechanisms of change in the intervention's effect on anxiety and depression
  19. Using an adaptive memory strategy to improve a multistart heuristic for sequencing by hybridization