Order parameters and energies of analytic and singular vortex lines in rotating3He-A
Research output: Journal contributions › Journal articles › Research › peer-review
Standard
In: Journal of Low Temperature Physics, Vol. 46, No. 1-2, 01.01.1982, p. 161-189.
Research output: Journal contributions › Journal articles › Research › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Order parameters and energies of analytic and singular vortex lines in rotating3He-A
AU - Passvogel, Thomas
AU - Schopohl, N.
AU - Warnke, Martin
AU - Tewordt, Ludwig
PY - 1982/1/1
Y1 - 1982/1/1
N2 - We present the expressions of the generalized Ginzburg-Landau (GL) theory for the free energy and the supercurrent in terms of the d vector, the magnetic field H, and operators containing the spatial gradient and the rotation Ω. These expressions are then specialized to the Anderson-Brinkman-Morel (ABM) state. We consider eight single-vortex lines of cylindrical symmetry and radius R=[2 mΩ/ℏ]-1/2: the Mermin-Ho vortex, a second analytic vortex, and six singular vortices, i.e., the orbital and radial disgyrations, the orbital and radial phase vortices, and two axial phase vortices. These eight vortex states are determined by solving the Euler-Lagrange equations whose solutions minimize the GL free energy functional. For increasing field, the core radius of the {Mathematical expression} texture of the Mermin-Ho vortex tends to a limiting value, while the core radius of the {Mathematical expression} texture goes to zero. The gap of the singular vortices behaves like rα for r → 0, where α ranges between {Mathematical expression} and {Mathematical expression}. The energy of the radial disgyration becomes lower than that of the Mermin-Ho vortex for fields H≥6.5 H*=6.5×25 G (at T=0.99 Tc and for R=10 L*=60 μm, or ω=2.9 rad/sec). For R → 2ξT(ξT is the GL coherence length) or ω →ωc2 (upper critical rotation speed), the energies of the singular vortices become lower than the energies of the analytic vortices. This is in agreement with the exact result of Schopohl for a vortex lattice at Ωc2. Finally, we calculate the correction of order (1 -T/Tc) to the GL gap for the axial phase vortex. © 1982 Plenum Publishing Corporation.
AB - We present the expressions of the generalized Ginzburg-Landau (GL) theory for the free energy and the supercurrent in terms of the d vector, the magnetic field H, and operators containing the spatial gradient and the rotation Ω. These expressions are then specialized to the Anderson-Brinkman-Morel (ABM) state. We consider eight single-vortex lines of cylindrical symmetry and radius R=[2 mΩ/ℏ]-1/2: the Mermin-Ho vortex, a second analytic vortex, and six singular vortices, i.e., the orbital and radial disgyrations, the orbital and radial phase vortices, and two axial phase vortices. These eight vortex states are determined by solving the Euler-Lagrange equations whose solutions minimize the GL free energy functional. For increasing field, the core radius of the {Mathematical expression} texture of the Mermin-Ho vortex tends to a limiting value, while the core radius of the {Mathematical expression} texture goes to zero. The gap of the singular vortices behaves like rα for r → 0, where α ranges between {Mathematical expression} and {Mathematical expression}. The energy of the radial disgyration becomes lower than that of the Mermin-Ho vortex for fields H≥6.5 H*=6.5×25 G (at T=0.99 Tc and for R=10 L*=60 μm, or ω=2.9 rad/sec). For R → 2ξT(ξT is the GL coherence length) or ω →ωc2 (upper critical rotation speed), the energies of the singular vortices become lower than the energies of the analytic vortices. This is in agreement with the exact result of Schopohl for a vortex lattice at Ωc2. Finally, we calculate the correction of order (1 -T/Tc) to the GL gap for the axial phase vortex. © 1982 Plenum Publishing Corporation.
KW - Digital media
KW - Media and communication studies
UR - http://www.scopus.com/inward/record.url?scp=33744559157&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/4798514e-8d51-3c9b-94a6-72a12200c061/
U2 - 10.1007/BF00655450
DO - 10.1007/BF00655450
M3 - Journal articles
AN - SCOPUS:33744559157
VL - 46
SP - 161
EP - 189
JO - Journal of Low Temperature Physics
JF - Journal of Low Temperature Physics
SN - 0022-2291
IS - 1-2
ER -